nerc.ac.uk

Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves

Horne, Richard B. ORCID: https://orcid.org/0000-0002-0412-6407; Thorne, Richard M.; Glauert, Sarah A. ORCID: https://orcid.org/0000-0003-0149-8608; Meredith, Nigel P. ORCID: https://orcid.org/0000-0001-5032-3463; Pokhotelov, Dimitry; Santolik, Ondrej. 2007 Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophysical Research Letters, 34 (17), L17107. 5, pp. 10.1029/2007GL030267

Before downloading, please read NORA policies.
[thumbnail of richard_etal_2007_NORA.pdf]
Preview
Text
richard_etal_2007_NORA.pdf

Download (253kB)

Abstract/Summary

Local acceleration is required to explain electron flux increases in the outer Van Allen radiation belt during magnetic storms. Here we show that fast magnetosonic waves, detected by Cluster 3, can accelerate electrons between ∼10 keV and a few MeV inside the outer radiation belt. Acceleration occurs via electron Landau resonance, and not Doppler shifted cyclotron resonance, due to wave propagation almost perpendicular to the ambient magnetic field. Using quasi-linear theory, pitch angle and energy diffusion rates are comparable to those for whistler mode chorus, suggesting that these waves are very important for local electron acceleration. Since pitch angle diffusion does not extend into the loss cone, these waves, on their own, are not important for loss to the atmosphere. We suggest that magnetosonic waves, which are generated by unstable proton ring distributions, are an important energy transfer process from the ring current to the Van Allen radiation belts.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1029/2007GL030267
Programmes: BAS Programmes > Global Science in the Antarctic Context (2005-2009) > Sun Earth Connections
ISSN: 0094-8276
NORA Subject Terms: Physics
Space Sciences
Date made live: 05 Feb 2009 12:09 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/5929

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...