Accurate forecasting of algal blooms in lakes can support effective freshwater management. However, observational datasets for calibrating and validating algal bloom forecasting models such as the General Lake Model - Aquatic Eco Dynamics (GLM-AED) are often scarce, which impedes robust model calibration and forecasting ability. Satellite remote sensing can help fill these gaps by offering high-frequency, large-scale measurements of phytoplankton chlorophyll-a concentration (mg m-3), but satellite chl-a products often carry high uncertainty. Here we introduce a novel approach to quantify uncertainty in satellite chl-a based on conformal prediction, with the aim of integrating robust chlorophyll-a products into GLM-AED. Using Sentinel-2 imagery from two eutrophic lakes in the UK, Esthwaite Water and Loch Leven, we obtain remotely sensed chlorophyll-a with low systematic signed percentage bias (-1.22 % and 0.38) and moderate median symmetric accuracy (15.87 and 43.02 %) using Polymer atmospheric correction. We effectively flag potentially uncertain chlorophyll-a estimates (coverage factor: 75.6 - 81 %). Integrating the screened remotely sensed chlorophyll-a estimates improved GLM-AED algal bloom forecasts by 50 % in Loch Leven and 13 % in Esthwaite Water, with the greater improvement in Loch Leven attributed to its higher initial model errors. In contrast, incorporating unscreened chlorophyll-a estimates into GLM-AED increases validation errors on average by 32 %.
Our findings show that process-based model predictions can substantially benefit from incorporating additional satellite-derived chlorophyll-a estimates. At the same time, they highlight a crucial need for robust uncertainty quantification to support downstream applications such as algorithm validation, biological monitoring in data-scarce regions, and water management decision-making.
Moreover, because conformal prediction is model-agnostic and satellite-derived chlorophyll-a products are globally accessible, our study paves the way for large-scale, well-calibrated bloom forecasting through process-based models.