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A B S T R A C T

Accurate forecasting of algal blooms in lakes can support effective freshwater management. However, obser-
vational datasets for calibrating and validating algal bloom forecasting models such as the General Lake Model - 
Aquatic Eco Dynamics (GLM-AED) are often scarce, which impedes robust model calibration and forecasting 
ability. Satellite remote sensing can help fill these gaps by offering high-frequency, large-scale measurements of 
phytoplankton chlorophyll-a concentration (mg m-3), but satellite chl-a products often carry high uncertainty. 
Here we introduce a novel approach to quantify uncertainty in satellite chl-a based on conformal prediction, with 
the aim of integrating robust chlorophyll-a products into GLM-AED. Using Sentinel-2 imagery from two eutro-
phic lakes in the UK, Esthwaite Water and Loch Leven, we obtain remotely sensed chlorophyll-a with low sys-
tematic signed percentage bias (-1.22 % and 0.38) and moderate median symmetric accuracy (15.87 and 43.02 
%) using Polymer atmospheric correction. We effectively flag potentially uncertain chlorophyll-a estimates 
(coverage factor: 75.6 - 81 %). Integrating the screened remotely sensed chlorophyll-a estimates improved GLM- 
AED algal bloom forecasts by 50 % in Loch Leven and 13 % in Esthwaite Water, with the greater improvement in 
Loch Leven attributed to its higher initial model errors. In contrast, incorporating unscreened chlorophyll-a 
estimates into GLM-AED increases validation errors on average by 32 %.

Our findings show that process-based model predictions can substantially benefit from incorporating addi-
tional satellite-derived chlorophyll-a estimates. At the same time, they highlight a crucial need for robust un-
certainty quantification to support downstream applications such as algorithm validation, biological monitoring 
in data-scarce regions, and water management decision-making.

Moreover, because conformal prediction is model-agnostic and satellite-derived chlorophyll-a products are 
globally accessible, our study paves the way for large-scale, well-calibrated bloom forecasting through process- 
based models.

Abbreviations: ACOLITE, Atmospheric Correction for OLI ‘lite’; Chl-a, Chlorophyll-a; CP, Conformal Prediction; CV, Coefficient of Variation; C2RCC, Case 2 
Regional CoastColour (atmospheric correction); EO, Earth Observation; GLM-AED, General Lake Mode - AquaticEcodynamics; MAE, Mean Absolute Error; MdSA, 
Median Symmetric Accuracy; MSI, MultiSpectral Instrument; NC, Non-conformity; OWT, Optical Water Type; Polymer, POLYnomial-based approach of MERIS data 
(atmospheric correction); SSPB, Symmetric Signed Percentage Bias; S2, Sentinel-2.
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1. Introduction

Algal blooms, defined as high accumulation of phytoplankton or 
cyanobacteria in aquatic systems, have become a pressing issue in lakes 
and reservoirs worldwide (Beaulieu et al., 2013; Feng et al., 2024; Paerl 
& Huisman, 2008). Blooms can appear swiftly under favourable condi-
tions driven by warm temperatures (Jöhnk et al., 2008; Paerl & Huis-
man, 2008), abundant nutrients (Beaulieu et al., 2013) and stable water 
column conditions, such as thermal stratification (Bormans et al., 2005). 
These complex and interconnected drivers highlight the dynamic and 
often unpredictable nature of algal blooms.

Process-based models, like the General Lake Model (GLM) coupled 
with the Aquatic Eco Dynamics model (AED) (Hipsey, 2022; Hipsey 
et al., 2019), have the capabilities to resolve algal bloom dynamics and 
their temporal heterogeneity. GLM-AED can simulate temperature 
(Bruce et al., 2018; Bueche et al., 2017; Mesman et al., 2020), dissolved 
oxygen, total phosphorus, nitrate, ammonium and a proxy for algal 
biomass, phytoplankton chlorophyll-a concentration (chl-a) (Fadel 
et al., 2019; Fenocchi et al., 2019; Krinos et al., 2019; Soares & Calijuri, 
2021; Ward et al., 2020). While GLM-AED demonstrates the potential to 
simulate algal blooms, its effectiveness remains contingent on the 
availability of high-quality observational datasets.

Meteorological and hydrological data, such as air temperature, wind 
speed, solar radiation, inflow rates, and nutrient concentrations, are 
essential for driving the GLM-AED model and can often be obtained from 
models or in situ sensors at relatively low cost. In contrast, chl-a mea-
surements, which are used for calibrating or validating phytoplankton 
dynamics within the model, are expensive and labour-intensive to 
collect, as they rely on laboratory analysis. This leads to limited spatial 
and temporal coverage of consistent chl-a observations across lakes.

This scarcity of in situ chl-a measurements limits our ability to model 
algal dynamics, including forecasting of blooms through process-based 
models and widens the gap between advances in hydrodynamic and 
ecological lake modelling. To close the observation gap between phys-
ical and biological variables, satellite remote sensing of lakes could 
provide direct estimates of water constituent concentrations such as chl- 
a (Bukata et al., 1974; Morel, 1980). In particular, the Sentinel-2 (S2) 
MultiSpectral Instrument (MSI) constellation provides high spatial res-
olution imagery (10 – 60 m) with a short revisit cycle of 2-3 days, with 
the A,B and C satellites in orbit (10-day nominal global coverage).

However, the estimation of chl-a through S2 MSI is subject to various 
sources of uncertainty including the necessary correction for atmo-
spheric disturbances (Warren et al., 2019), adjacency effects of the 
surrounding environment (Santer & Schmechtig, 2000), complex water 
constituent compositions (Werther, et al., 2022a) and errors in obser-
vational processing schemes (Burggraaff, 2020). Algorithmic ap-
proaches for chl-a retrieval are subject to model-specific uncertainties, 
and only a handful of methods explicitly quantify them (Werther et al., 
2022b). As multiple sources of uncertainty are inherent within aquatic 
remote sensing, accurately quantifying uncertainty in satellite-derived 
products for downstream uses, such as an input to GLM-AED, is 
pivotal to reliable modelling (Werther & Burggraaff, 2023).

To enable the use of satellite-derived chl-a products for improved 
GLM-AED calibration and validation, we introduce an approach rooted 
in conformal prediction (CP) (Vovk et al., 2005). Using a separate 
baseline dataset, CP evaluates how closely new chl-a estimates conform 
to established patterns. CP not only produces well-calibrated, spatially 
explicit uncertainty estimates but also offers a data-driven threshold for 
filtering unreliable observations Although CP is well established in 
applied machine learning and terrestrial remote-sensing tasks, such as 
estimating canopy height and identifying tree species (Fontana et al., 
2023; Papadopoulos, 2008; Singh et al., 2024), its application in aquatic 
remote sensing is only indirect (Waczak et al., 2024). Here, we apply CP 
to a range of S2 MSI chl-a retrieval approaches and illustrate how its 
model-agnostic design allows seamless integration with these 
approaches.

We hypothesise that incorporating MSI-derived chl-a estimates into 
the GLM-AED model will enhance both its calibration and estimation 
accuracy relative to using only in situ chl-a measurements. This 
assumption is driven by evidence from prior research suggesting that 
satellite-based observations can refine ecosystem models (Deng et al., 
2024; Hedger et al., 2002). We also hypothesise that filtering MSI chl-a 
estimates through CP-derived uncertainty thresholds will result in 
greater levels of improvement than relying on unfiltered estimates, 
given that discarding highly uncertain observations may prevent error 
propagation.

Accordingly, this study addresses the following questions: 

(1) To what extent can chlorophyll-a be accurately estimated from 
MSI data over two eutrophic lakes for integration into the GLM- 
AED model?

(2) How effective is the conformal prediction (CP) method in filtering 
MSI-derived chl-a estimates?

(3) Does incorporating these filtered chl-a estimates into the cali-
bration of GLM-AED improve the accuracy of algal bloom fore-
casting and detection?

2. Methods

2.1. In situ data

2.1.1. Study lakes
Two freshwater lakes in the United Kingdom (UK) were used as case 

study sites (Fig. 1). Esthwaite Water is a small (surface area of 0.96 km2), 
shallow (mean depth 6.9 m), eutrophic lake located in the English Lake 
District (Mackay et al., 2012, 2014; Mortimer, 1942). Loch Leven is a 
comparably larger (surface area13.3 km2) and shallower (mean depth 
3.9 m) eutrophic lake in lowland Scotland (Carvalho et al., 2012). Both 
lakes have a long history of algal blooms consisting of cyanobacterial 
and diatom species (Maberly et al., 2011; May & Spears, 2012) with 
mean annual chl-a values of 18.5 mg m-3 in Esthwaite Water and 25.1 
mg m-3 in Loch Leven (Carvalho et al., 2012; Maberly et al., 2011; 
Madgwick et al., 2006; Spears et al., 2012). In addition, both lakes have 
been studied using Earth observation (Hedger et al., 2002; Hunter et al., 
2010; Liu et al., 2021).

2.1.2. Chlorophyll-a concentration
Fortnightly in situ chl-a for Esthwaite Water (n = 156) (Feuchtmayr 

et al., 2021, 2024, 2025) and Loch Leven (n = 145) (Dudley et al., 2013; 
Taylor et al., 2021, 2022a, 2022b, 2023) were extracted for the period 
January 2016 to December 2022 from an ongoing long-term monitoring 
programme by the UK Centre for Ecology & Hydrology (UKCEH) (see 
sampling points indicated in Fig. 1). Samples were unavailable or could 
not be collected in June and July 2019 and March to July 2020 due to 
the Covid-19 pandemic. For Loch Leven, chl-a data were only available 
until November 2021.

For both lakes, chl-a was determined by filtering a known volume of 
water from a 0-5 m integrated sample onto a Whatman GF/C filter on the 
day of sampling with the filter then frozen for later analysis. Filters were 
defrosted and extracted in a faster hot methanol method for Esthwaite 
Water and a slower cold methanol for Loch Leven, which reduces 
thermal degradation. These were measured spectrophotometrically with 
absorbance values converted to chl-a following the protocols of Talling 
(1974) for Esthwaite Water by and Rice et al. (2017) for Loch Leven.

2.1.3. GLM-AED driving data
Latitude, longitude, depth, area and elevation for each lake were 

provided by UKCEH (Mackay et al., 2014; Spears et al., 2012). Hourly 
shortwave radiation, longwave radiation, air temperature, relative hu-
midity, windspeed, rain and snow were obtained from ERA 5 simula-
tions for 2016 to 2022 for the respective pixel (latitude-longitude 0.25 ◦x 
0.25 ◦ grid) in which the lake coordinate falls (Hersbach et al., 2018). 
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For the same period, daily lake inflow or outflow data were obtained 
from the UK National River Flow Archive for the main inflowing rivers 
(Esthwaite Water: Black Beck; Loch Leven: North Queich, South Queich 
and Greens Burn) or the outflow. In both lakes, outflow was assumed to 
be equal to the inflow. Fortnightly water temperature and chemistry in 
situ measurements (pH, phosphorus, nitrate, ammonia and silica) were 
provided by UKCEH and linearly interpolated to provide daily 
resolution.

2.2. Satellite data processing

S2 MSI images were atmospherically corrected to derive surface 
water remote-sensing reflectance (Rrs (λ)), followed by a valid pixel 
identification to exclude non-water pixels using IdePix (Identification of 
Pixel features) (Skakun et al., 2022). We then assessed the spatial ho-
mogeneity of the water surface area around the fortnightly sampling 
locations in Esthwaite Water and Loch Leven. We used thirteen inland 
water Optical Water Types (OWTs) defined in Spyrakos et al. (2017), 
representing clusters of water bodies with similar optical characteristics, 
to inform chl-a retrieval algorithm selection for each lake (Atwood et al., 
2024; Eleveld et al., 2017; Liu et al., 2021; Neil et al., 2019). Finally, we 
quantified the uncertainties associated with MSI chl-a estimates through 
CP, resulting in filtered MSI chl-a to calibrate the GLM-AED model.

2.2.1. Atmospheric correction and valid pixel identification
S2 MSI tiles (30UVF for Esthwaite Water and 30VVH for Loch Leven) 

were processed using three different atmospheric correction algorithms: 
Atmospheric Correction for OLI ‘lite’ (ACOLITE) (Vanhellemont & 
Ruddick, 2016), POLYnomial-based approach of MERIS data (Polymer) 
(Ramon et al., 2011) and Case 2 Regional CoastColour atmospheric 
correction (C2RCC) (Brockmann et al., 2016) for the period of 2016 and 
2024. A 3 × 3 MSI pixel grid around the respective in situ coordinate was 
extracted for match-up generation with the fortnightly in situ sampling 
following the match-up protocol of Concha et al. (2021). We excluded 
pixels flagged as invalid due to cloud (including ambiguous, sure, and a 
buffer) or cloud shadow, snow/ice, bright, coastline land, white and 
glint risk.

2.2.2. Spatial homogeneity test and S2 matchups
A spatial homogeneity test was conducted to identify MSI scenes 

affected by high spatial Rrs variability within 3 × 3 kernels of valid pixels 
(Zibordi et al., 2018). Spatial coefficient of variation (CV), defined as the 
ratio of the standard deviation to the mean, was calculated for the 560 
nm band (Zibordi et al., 2018). Pixel kernels with a CV greater than 0.25 

(25 %) were deemed to have high spatial variability and removed from 
the dataset.

2.2.3. Remote sensing algorithm calibration and validation
The resulting MSI scenes were matched with in situ chl-a within a ±

3-day range of the in situ sampling date following previous studies 
(Ansper & Alikas, 2018; Riddick et al., 2019). A 3-day window resulted 
in significantly more match ups (±50 matchups) than a 1 (±22) or 2 
(±34) day window. For all valid Rrs (λ) an OWT membership score was 
calculated by estimating of the spectral angle (Kruse & Lefkoff, 1994; Liu 
et al., 2021) and the OWT with the highest similarity score was assigned 
(Spyrakos et al., 2017), resulting in one OWT (Table 1) per pixel. The 
OWTs were assigned to one of three clusters based on common cluster 
characteristics (Table 1; Neil et al., 2019). Cluster A represents the most 
transparent water (in terms of biomass and turbidity), B represents 

Fig. 1. MSI chl-a maps of Loch Leven (A) and Esthwaite Water (B) and their respective locations in the UK, using Polymer atmospheric correction and lake-optimised 
Gurlin et al. (2011) on 2016-06-09 (A) and 2016-07-19 (B). The blue points indicate in situ sampling sites.

Table 1 
Optical Water Types (OWT), characteristics, trophic status, and clustering. The 
table summarises the characteristics and trophic status of different OWTs based 
on their reflectance features and associated water quality properties. Each OWT 
is categorised into a trophic status (hypereutrophic, meso-eutrophic, or oligo-
trophic) and assigned to a cluster (A, B, or C) based on that trophic status. A is 
Oligotrophic, B is Meso-eutrophic and C is Hypereutrophic.

OWT Dominant characteristics Trophic status Cluster

1 Hypereutrophic waters with scum of 
cyanobacterial bloom and vegetation like Rrs.

Hypereutrophic B

2 Diverse reflectance shape, marginal 
dominance of pigments and CDOM over 
inorganic suspended particles

Meso-eutrophic B

3 Clear waters Oligotrophic A
4 Turbid waters with high organic content Meso-eutrophic B
5 Sediment-laden waters Meso-eutrophic B
6 Balanced effects of optically active 

constituents at shorter wavelength
Hypereutrophic C

7 Highly productive waters with high 
cyanobacteria abundance and elevated 
reflectance at the red/near-infrared spectra

Hypereutrophic C

8 Productive waters with cyanobacteria 
presence and with Rrs peak close to 700 nm

Hypereutrophic C

9 Optically neighbouring to OWT2 but higher 
Rrs at shorter wavelength

Oligotrophic A

10 CDOM rich waters Hypereutrophic C
11 High in CDOM with cyanobacteria presence 

and high absorption efficiency by NAP
Meso-eutrophic B

12 Turbid, moderately productive waters with 
cyanobacteria presence

Meso-eutrophic B

13 Clear blue water Oligotrophic A
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moderately transparent water conditions associated with mesotrophic 
status and C represents turbid and/or hypereutrophic conditions.

2.2.4. Chlorophyll-a algorithms
Nine widely used chl-a algorithms (Table 2) were evaluated for the 

case study lakes. Algorithms 1 to 7 are empirical band-ratio and (semi-) 
analytical algorithms, 8 and 9 are probabilistic neural networks. All 
algorithms use multispectral Rrs (λ) in selected bands as input (Table 2).

Algorithm parameters were optimised for the case study conditions 
within each OWT cluster (Table 1) using a nonlinear fit for algorithms 3, 
4 and 6 and a linear model fit for algorithm 5, because global algorithm 
coefficients often fail to generalise effectively to individual lakes 
(Werther et al., 2022b). Algorithms 1, 2 and 7 have fixed parameters, 
and the two probabilistic algorithms (8 and 9) are calibrated based on 
large-scale application and therefore cannot be optimised.

MSI estimates in oligo-mesotrophic lakes with low to moderate chl-a 
concentrations are particularly susceptible to inaccuracies in satellite- 
derived retrievals (Neil et al., 2019; Werther et al., 2022a). To address 
this, we introduce a separate classification, “BNN < 10,” which uses the 
Bayesian Neural Network (BNN) approach by Werther et al. (2022b). 
This approach targets lakes with chl-a below 10 mg m⁻³ in OWTs 2, 3, 4, 
5, and 9, providing estimates that carry a BNN-specific uncertainty 
below 60 %. Whenever these BNN-based low uncertainty estimates are 
available, they take precedence over other algorithm values.

The algorithm performance for each OWT cluster was assessed using 
three widely used metrics: the Pearson correlation coefficient (R), to 
measure the strength of the linear relationship between in situ and MSI 
chl-a estimates; the mean absolute error (MAE); and the Median Sym-
metric Accuracy (MdSA), which quantifies the median error between in 
situ chl-a and estimated chl-a (Morley et al., 2018), and is commonly 
used in remote sensing literature (Pahlevan et al., 2020; Werther et al., 
2022b): 

MdSA =

⎛

⎜
⎝e

median

([

log

(
yest
ytrue

)])

− 1

⎞

⎟
⎠ × 100 (1) 

and the Symmetric Signed Percentage Bias (SSPB), which evaluates 
whether an algorithm systematically over- or under-estimates chl-a 
(Morley et al., 2018): 

SSPB = sign
(

median
(

log
(

yest

ytrue

)))
⎛

⎜
⎝e

[

median

(

log

(
yest
ytrue

))]

− 1

⎞

⎟
⎠× 100

(2) 

In which Yest represent the estimated chl-a concentrations from the 
model, algorithm or MSI and Ytrue represents the in situ chl-a concen-
trations. The best-performing algorithms were identified for each OWT 
cluster and subsequently combined to calculate MAE, MdSA, and SSPB 
values over the whole chl-a range. These metrics facilitated the selection 
of the optimal OWT-clustered chl-a algorithm and atmospheric correc-
tion combination for each lake.

2.3. Conformal prediction uncertainty quantification

Conformal prediction (CP) (Angelopoulos & Bates, 2023, Vovk et al., 
2005) was adapted here to quantify uncertainty in MSI-derived chl-a 
estimates (Fig. 2). We used a non-conformity percentage as a proxy for 
uncertainty, based on the idea that the uncertainty associated with a 
new MSI chl-a retrieval relates to how the chl-a retrieval error compares 
with those of the reference observations. In this context, error is the 
non-conformity score (αi) defined as the absolute error between an MSI 
chl-a estimate and its corresponding match up in situ measurement.

The absolute error for MSI chl-a estimates with corresponding in situ 
observations (matchups) was calculated and the dataset was split into 
two sets: conformity (reference dataset) and test (new observations). In 
the CP framework, the terms conformity and test are used instead of 
calibration and validation to avoid confusion with their traditional use 
in chl-a algorithms and GLM-AED model tuning. While these dataset 
splits may appear similar, their functions differ: calibration and vali-
dation involve adjusting and evaluating model parameters, whereas 
conformity and test assess the consistency of new data without modi-
fying the model. The terminology reflects these distinct roles.

One year was assigned as the test set, while the remaining years (six 
for Esthwaite Water and five for Loch Leven) formed the conformity set 
(Fig. 2). As noted in section 2.2.3, not all MSI chl-a estimates had cor-
responding in situ chl-a measurements (i.e., no match-up); these esti-
mates were assigned to the test set. Their absolute errors for these 
observations were estimated using the following procedure: 

1. Identifying the three in situ chl-a measurements closest in time (day 
of the year).

2. Averaging these measurements by weighting same-year observations 
twice to account for inter-annual variability.

3. Calculating the absolute difference between the MSI estimate and 
this weighted average.

We then sorted the non-conformity scores from the conformity set 
(
αconformity

)
in ascending order. For each test observation, we determined 

the position of its non-conformity score 
(
αtest,i

)
within the sorted con-

formity set and calculated its percentile rank, termed the non- 
conformity percentage.

Prediction intervals were derived using the 5th and 95th percentiles 
of αconformity and scaled by the ratio of αtest,i to the median of αconformity to 
accommodate varying uncertainty levels. Calibration quality was eval-
uated using a coverage factor, i.e. the proportion of intervals that suc-
cessfully encompassed the interpolated in situ chl-a values, including 

Table 2 
Chl-a estimation algorithms used in this study. Ranges are adjusted based on 
findings of Odermatt et al. (2012).

Name Abbreviation Used bands Chl-a 
application 
range (mg m- 

3)

Reference

1 Two Band 
MERIS

Gil2band 665, 708 0-80 (Gilerson 
et al., 
2010)

2 Three Band 
Meris

Gil3band 665, 708 and 
753

0-80 (Gilerson 
et al., 
2010)

3 Ocean 
Colour 2- 
band

OC2 490,560 0.012-15 (O’Reilly, 
2000)

4 Ocean 
Colour 3- 
band

OC3 443,490,560 0.012-15 (O’Reilly, 
2000)

5 Moses 2- 
band

Moses 665,708 10-100 (Moses 
et al., 
2009)

6 Gurlin 2- 
Band

Gurlin 665,708 2.3-200.8 (Gurlin 
et al., 
2011)

7 Gons05 Gons 665,708, 783 0-100 (Gons 
et al., 
2002)

8 Bayesian 
Neural 
Network 
based on 
Monte Carlo 
Dropout

BNN All bands 
(443 – 783)

0-68 (Werther 
et al., 
2022b)

9 Mixture 
Density 
Network

MDN All bands 
(443 – 783)

0-1000 (Pahlevan 
et al., 
2020)
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those without a direct match-up (Saranathan et al., 2024; Werther, et al., 
2022a; Yao et al., 2019).

An automatic rejection threshold (q̂) was set at the 90th percentile of 
αconformity: if a test sample’s non-conformity percentage exceeded this 
threshold, it was classified as an outlier. Additionally, to illustrate the 
impact of uncertainty filtering, a stricter manual threshold of 50 % was 
applied, resulting in three filtering scenarios for MSI-derived chl-a es-
timates: All Earth Observations (EO) (no filtering), High NC (filter out 
values above 90 %) and Low NC (filter out values above 50 %).

The conformal prediction process was executed in folds that resam-
pled the data, ensuring that each year served as the test set once so that 
every MSI chl-a estimate received a non-conformity percentage. For 
estimates appearing in multiple folds, the final non-conformity per-
centage was computed as the average across folds.

Our CP approach includes two adaptations to quantify uncertainty in 
satellite-derived chl-a estimates. First, rather than splitting data into 
three sets (training, calibration, and test) as required by typical CP ap-
plications in machine learning settings (Angelopoulos & Bates, 2023; 
Singh et al., 2024; Waczak et al., 2024), we leverage the fact that most 
chl-a algorithms used in this study are semi-analytical or empirical. 
These methods do not require training; hence, we partition the available 
dataset directly into a calibration set and an evaluation (test) set.

Second, exchangeability, a key assumption for the validity of CP 
(Angelopoulos & Bates, 2023; Singh et al., 2024; Vovk et al., 2005), 
requires that the order of observations does not affect their joint dis-
tribution. To approximate this condition in our dataset, we split the 
dataset by year rather than using random sampling. This approach 
naturally accounts for seasonal variations by ensuring that observations 
within each year are drawn from the same underlying distribution, 
which is essential for the CP guarantees to hold. Our CP implementation 
is publicly available on GitHub (see the Code Availability section).

2.4. GLM-AED recalibration

The GLM-AED model was applied to Esthwaite Water and Loch Leven 
to simulate chl-a concentrations. Each lake was manually calibrated by 
adjusting key parameters within realistic ranges: the light extinction 
coefficient (Kw, 0.1–1.5 m⁻¹), which affects light penetration and 

thermal stratification, and the wind factor (fwind, 0 - 2), which scales 
wind speed and influences mixing and surface cooling.

Sensitivity analyses identified the maximum growth rates of phyto-
plankton groups (Rgrowth) as key parameters for optimisation. These 
parameters were found to offer the greatest potential for improving 
model performance but are difficult to determine accurately from 
existing literature. For this study, two functional phytoplankton groups 
were defined: one representing diatom and the other cyanobacteria, as 
these were identified as the dominant bloom-forming taxa in the data-
bases of the two lakes.A systematic parameter calibration was conducted 
to optimise the maximum growth rates for cyanobacteria (Rcyano) and 
diatoms (Rdiatom). A total of four hundred combinations of the two pa-
rameters were evaluated using a 20 × 20 grid, with simulations run for 
the period 2016 to 2022. This approach allowed for the identification of 
parameter combinations that produced the best agreement with in situ 
chl-a dynamics. For Esthwaite Water (Rdiatom: 0.06 – 2.8, Rcyano: 0.26 – 
1.16) and Loch Leven (Rdiatom: 0.1 – 4, Rcyano: 0.1 – 4) the growth rate 
ranges were thus lake-specific and ensured that the parameter space was 
representative of the ecological conditions in each system.

GLM-AED model calibration was conducted on even years (2016, 
2018, 2020, and 2022), while validation was performed on odd years 
(2017, 2019, and 2021) following the method used by Essou et al., 
(2016) and as suggested by Xu, (2021) for hydrological models due to its 
spatial and temporal varying data quality and to consider climatic 
trends. For each of the 400 runs, the MdSA and the Mean Absolute Error 
(MAE): 

MAE =

∑n
i=1|yi − xi|

n
, (3) 

were calculated using the calibration years. The top three runs for each 
scenario, based on these metrics, were selected for further validation. 
GLM-AED model validation was conducted by calculating the MdSA and 
MAE based on the model-derived surface chl-a and in situ chl- 
measurements.

2.4.1. Evaluation scenarios
GLM-AED model calibration was undertaken using seven different 

Fig. 2. Overview of the conformal prediction approach developed based on Angelopoulos & Bates (2023) and Vovk et al. (2005).
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scenarios. These scenarios were based on the different uncertainty 
filtering scenarios of the MSI-derived chl-a estimates (Section 2.3) per 
lake (Table 3).

The seven scenarios allow us to evaluate three key aspects. First, they 
assess whether using MSI chl-a estimates enhances the calibration of 
GLM-AED (scenario a). Second, they examine whether filtering MSI chl- 
a estimates further improves GLM-AED accuracy (comparison of sce-
narios b, c, and d). Third, they evaluate whether a calibration approach 
that incorporates in situ and MSI chl-a estimates is more effective than 
one that relies solely on MSI chl-a estimates (comparison of scenarios b, 
c, and d versus e, f, and g).

2.4.2. Algal bloom agreement
In situ and model-derived chl-a were labelled as ’Bloom’ if they 

exceeded 25 mg m⁻³. The threshold is based on Alert level 2 (>24 mg m- 

3) for cyanobacteria of the World Health Organization (World Health 
Organization, 2021).To evaluate the model’s alignment with in situ 
chl-a bloom occurrences (Bloom agreement) for each scenario, instances 
in which in situ chl-a values and GLM-AED chl-a outputs simultaneously 
indicated a bloom were counted (Ncorrect) and divided by the total 
number of bloom instances in the in situ chl-a (Nobserved): 

Bloom Agreement (%) =

(
Ncorrect

Nobserved

)

∗ 100. (4) 

The bloom agreement percentage per scenario, per lake provides 
insight into the impact of filtered MSI chl-a estimates on bloom 
forecasting.

3. Results

3.1. MSI spatial homogeneity

Polymer derived reflectance produced the lowest spatial variability 
(n=105, n=172 scenes with CV<0.25) in Esthwaite Water and Loch 
Leven, when compared to the atmospheric correction algorithms ACO-
LITE (n=100, n=97) and C2RCC (n=87, n =153).

The difference in spatial variability across the atmospheric correc-
tion methods is an inherent indicator of their limitations. The most 
spatially variable scenes (CV>0.25) in Esthwaite Water and Loch Leven 
were removed. Match-ups were available for approximately 25 % of 
scenes in Loch Leven (Polymer = 47, C2RCC = 39, ACOLITE = 24) and 
36 % of scenes in Esthwaite Water (Polymer = 37, C2RCC = 29, ACO-
LITE = 40).

3.2. Optical Water Type classification

All OWTs, except 10, were observed at least once across all atmo-
spheric correction approaches and lakes, but their relative frequencies 
varied strongly across the different atmospheric correction methods 

(Fig. 3). Polymer and C2RCC aligned in that they excluded certain OWT 
classes (1, 5, 7 and 8 for Esthwaite Water, and 1 and 7 for Loch Leven), 
whilst ACOLITE observes classes 1 in Esthwaite Water and 5 in both 
lakes (Fig. 3). C2RCC and Polymer show highest representation of 
clusters A and B with cluster C being absent in C2RCC. ACOLITE shows 
equal representation of clusters A, B and C in Esthwaite Water. In Loch 
Leven, ACOLITE assigns most scenes to cluster B, showing ACOLITE to 
be the outlier.

3.3. MSI chl-a estimation

The MSI chl-a retrieval resulted in higher R values in Esthwaite 
Water compared to Loch Leven and a better visual fit (Fig. 4). Moderate 
chl-a range (10- 40 mg m-3) of Loch Leven was inadequately retrieved by 
the chl-a algorithms. The OWT cluster-based optimisation improved the 
retrieval for both lakes compared to the non-optimised MSI chl-a esti-
mates (grey triangles, Fig. 4), which showed up to 50 % lower R values, 
3.8 times higher MdSA’s and 16 times higher SSPB values.

The diversity between atmospheric correction methods was visible in 
the error metrics of the chl-a retrieval results (Fig. 4). The C2RCC SSPB 
was 3 to 10 times higher compared to Polymer and ACOLITE, with the 
MDSA (higher) and R (lower) metrics deterioration as well. The ACO-
LITE SSPB for Loch Leven and MdSA for Esthwaite Water were observed 
to be the lowest. However, Polymer outperforms across the remaining 
error metrics and therefore the better choice.

3.4. Uncertainty quantification

The uncertainty quantification using CP resulted in an expected 
range of non-conformity scores for MSI chl-a estimate from 0 to 100 %. A 
rejection rate (non-conformity > 90 %) of ± 29 % was observed with 29 
MSI chl-a estimates in Esthwaite Water and 26 in Loch Leven (Fig. 5).

Removal of rejected values resulted in a significant reduction of the 
MdSA from 53.83 % to 36.55 % in Esthwaite Water (MAE: 9.2 to 4.95) 
and in Loch Leven from 39.17 % to 24.93 % (MAE: 12.6 to 7.65). 
Adjusting the rejection rate further to 50 % (Low NC) changed the MdSA 
of Esthwaite Water minimally from 36.55 % to 37.33 % (MAE: 4.95 to 
3.81). However, reduced it significantly for Loch Leven from 39.17 % to 
16.21 % (MAE: 7.65 to 5.38). The coverage factor is lower for Esthwaite 
Water (75.58 %) than for Loch Leven (80.95 %), indicating that the 
uncertainty percentages in Loch Leven were slightly better calibrated 
than those for Esthwaite Water.

3.5. GLM application

Esthwaite Water resulted in lower errors between in situ and GLM- 
AED compared to Loch Leven. An overestimation of the chl-a peaks by 
25 mg m-3 in Esthwaite Water and 50 to 75 mg m-3 in Loch Leven was 
observed in all scenarios.

Calibration scenarios relying solely on MSI chl-a estimates (b,d,f) 
consistently reduced the MdSA in Loch Leven compared to scenarios 
using in situ data. In Esthwaite Water, the scenario d resulted in a 
reduction in MdSA, making it the sole scenario to demonstrate a 
decrease across both lakes (Fig. 6).

Scenarios combining MSI chl-a estimates and in situ chl-a (c,e,g) 
resulted in decreased or equal MdSA values in 5 out of 6 cases, with g 
showing no change for either lake. In Esthwaite Water, High NC + In situ 
(e) was the only scenario involving in situ data that reduced the MdSA.

Calibration using in situ (a) captured fifty percent of blooms in 
Esthwaite Water and 36 % in Loch Leven (Fig. 6). In Loch Leven, the MSI 
chl-a estimate scenarios increased bloom agreement up to 80 % (b and d) 
and 64 % (f). Esthwaite Water bloom agreement increased in two sce-
narios (d and e) up to 63.6 %, making the High NC scenario the best 
performing across the lakes. Despite improving the MdSA in both lakes, 
the All EO scenario (f) resulted a significant decrease in bloom agree-
ment to 31 % in Esthwaite Water and reduced improvement in Loch 

Table 3 
The seven different evaluation scenarios used for model recalibration. Each 
scenario has a letter (a-g), a Name and a column explaining which chl-a data is 
part of that scenario. Non-Conformity is later abbreviated as NC and Earth 
Observation as EO (Scenario e, f and g).

Scenario Name Description

a In situ All available in situ chl-a values
b All Earth 

Observation
All MSI chl-a estimates

c High Non- 
Conformity

MSI chl-a estimates with a non-conformity scare 
≤90 %

d Low Non- 
Conformity

MSI chl-a estimates with a non-conformity score 
≤ 50 %

e In situ + All EO a + b
f In situ _ High NC a + c
g In situ + Low NC a + d
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Leven.

4. Discussion

The GLM-AED model chl-a output for Loch Leven and Esthwaite 
Water is line with the current literature. For comparison with (Fenocchi 
et al., (2019) who report errors in terms of nMAE, the MAE of 19.73 mg 

m⁻³ for Loch Leven and 12.61 mg m⁻³ for Esthwaite Water correspond to 
a normalised MAE values of 88.3 % and 56.5 %, respectively. These 
values are in line with the nMAE of 56 % ± 24 % found in Fenocchi et al 
(2019) for a range of different lakes. Loch Leven exhibits a larger error 
compared to Esthwaite Water, with higher MAE, nMAE, and MdSA 
values, reflecting greater challenges in accurately representing this lake 
as well as the differences between lakes characterised by the same 

Fig. 3. Total number of images per Optical Water Type, per lake and, per AC method. The colours represent the different OWT clusters: A (clear), B (intermediate), 
and C (turbid), providing a visual distinction of the distribution of individual OWT across the different clusters.

Fig. 4. Performance of the best chl-a algorithms for each lake and atmospheric correction method. Grey triangles represent non-optimised algorithms, highlighting 
the comparison between optimised (coloured points) and non-optimised algorithm performance across the different conditions. Performance is evaluated.
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model.

4.1. MSI derived chl-a

The MSI derived chl-a also reported higher errors in Loch Leven, 
compared to Esthwaite Water across atmospheric correction and chl-a 
algorithms. This reoccurring finding across different data sources can be 
explained by the shallower nature of Loch Leven resulting in more dy-
namic clear and turbid states (Scheffer & Van Nes, 2007).

Overall, MSI-derived chlorophyll-a estimates achieved reasonable 
accuracy across the two case study lakes using the Polymer atmospheric 

correction (R: 0.76–0.90; MdSA: 15.67 %–43.02 %). Optimal perfor-
mance required the combined use of OWT clustering, appropriate at-
mospheric correction, and careful selection of chl-a retrieval algorithms.

4.2. Uncertainty quantification through conformal prediction

The high coverage factor (75 – 80 %) and improved error metrics 
after CP filtering showed that the approach is an effective tool for quality 
control of MSI derived chl-a concentrations. While some inaccuracies 
were observed, in particular chl-a estimates showed high nonconformity 
scores despite being close to in situ measurements, these variations 

Fig. 5. Non-conformity quantification of the MSI chl-a estimates, along with their corresponding prediction intervals. In situ chl-a values are shown in black, with 
MSI chl-a estimates coloured based on their conformity. Rejected estimates, where non-conformity exceeds 90 %, are marked displayed as an asterisk and accepted 
estimates are represented as points. The data is separated by lake to illustrate the variability in conformity.

Fig. 6. Median Absolute Scaled Error (MdSA, %) of the full chl-a range for each scenario and lake (a-g) shown on the left. On the right, the percentage of bloom 
agreement between in situ chl-a concentrations and the GLM-AED scenario outputs (a-g) is displayed. Both Fig.s highlight the accuracy and agreement of chl-a 
estimations across different scenarios and lakes.
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provided valuable insights into the dataset. The anomalous climatic 
conditions of 2017, the fifth warmest year since 1910 (Royal Meteoro-
logical Society, 2018), likely contributed to these discrepancies, along-
side the limited number of in situ matchups available for that period. 
Understanding these factors helps refine the CP approach and improve 
uncertainty estimates. Importantly, since these errors occurred at chl-a 
values below 30 mg m⁻³, their impact on bloom detection outcomes 
remained minimal.

The uncertainty estimates from our CP approach align with those 
reported in previous studies. For instance, Saranathan et al., (2023)
reported uncertainties of 10 to 45 % for chl-a using Mixture Density 
Networks, while Werther et al. (2022b) found uncertainties ranging 
from approximately 30 % to 80 % for chl-a over oligotrophic and 
mesotrophic lakes, depending on prior atmospheric correction and lake 
characteristics. Similarly, global chl-a estimates by Liu et al. (2021)
yielded comparable uncertainty ranges, suggesting that our findings 
reflect common capabilities of chl-a estimation via Sentinel-2 MSI.

A wide range of uncertainty quantification methods for chl-a 
retrieval exist (IOCCG, 2019), but in practice are often built on machine 
learning–based approaches (e.g., Saranathan et al., 2024) techniques 
tailored to specific models or optical water types (e.g., Liuet al., 2021), 
and uncertainty propagation calculations (e.g., Xi et al., 2021). These 
methods are usually not model agnostic, therefore not easily trans-
ferrable. In contrast, CP fills a critical gap by providing uncertainty es-
timates for any chl-a algorithm, provided a sufficient dataset is 
available, even for algorithms originally published without uncertainty 
metrics.

4.3. Incorporation of MSI derived chl-a

Calibration using MSI chl-a estimates filtered using the High NC 
scenario produced significant reductions in MdSA, demonstrating two 
key points. First, MSI chl-a estimates can improve the calibration of the 
chl-a model; second, filtering these estimates prior to downstream use is 
not only beneficial but necessary to prevent calibration deterioration.

Although we expected that combining MSI chl-a estimates with in 
situ data would yield even better results, our findings indicate that the 
combined use provided no additional model improvement or bloom 
agreement. We speculate that the in situ observations are dominated by 
low chl-a values (<25 mg m⁻³), whilst the MSI estimates show an even 
distribution after matchups. In addition, satellite estimates are con-
strained to surface chl-a values only, whilst in situ tends to be a mixed 
sample from 0 to 5 m which could result in a more diluted sample. As no 
negative effects were observed when combining the two sources, 
structured integration of chl-a values creates potential for further 
enhancement.

The High NC scenario improved bloom agreement in both lakes, 
while scenarios that incorporated unfiltered MSI chl-a estimates (All EO, 
scenarios B and E) or in situ data (scenarios F and G) showed diminished 
or no improvements. This indicates that filtering MSI chl-a estimates is 
essential for optimising their predictive utility, and we propose filtering 
based exclusively on the High NC scenario metric of rejected values.

4.4. Towards large-scale algal bloom forecasting

Despite the merits of each method, neither GLM-AED nor EO alone 
would be able to support large-scale algal bloom forecasting. GLM- 
AED’s capacity to estimate bloom events is often constrained by limited 
calibration datasets, especially for regions lacking consistent in situ 
observations. Meanwhile, EO platforms can only provide near-real-time 
or retrospective measurements, heavily dependent on clear-sky condi-
tions. Consequently, relying on GLM-AED alone risks calibration inac-
curacies, and solely using EO forfeits the ability to forecast.

The combined use offers a novel pathway for scaling algal bloom 
forecasting to a global level. Its core strength lies in leveraging com-
plementary capabilities: GLM-AED grounds bloom estimation in 

physical principles constrained by hydrodynamic forcing parameters, 
while satellite observations, such as those derived from Sentinel-2 MSI, 
provide spatially extensive estimates of chl-a based on bio-optical 
relationships.

A critical first step for broad application of this combined approach is 
establishing a robust hydrodynamic foundation in GLM, ensuring that 
water balance and temperature/oxygen profiles are accurately modelled 
prior to refining chl-a calibration. In cases where hydro-meteorological 
observations are lacking, consistent input variables (e.g. inflow, 
outflow, meteorological drivers) can be derived from large-scale rean-
alysis products, such as the Modern-Era Retrospective Analysis for 
Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017) or 
ERA-5 for atmospheric drivers and Soil and Water Assessment Tool 
(SWAT) (Arnold et al., 1998) for flow and nutrients. These often have 
broad spatial coverage and high temporal resolution, thereby over-
coming observational scarcity and provide reliable forcing conditions 
for the model.

Whilst Bruce et al., (2018) demonstrated multi-lake applications of 
GLM, no parallel large-scale study using GLM-AED with EO datasets has 
been completed. A logical next step would be to apply the approach 
developed in this study across a broader set of lakes globally, moving 
toward large-scale algal bloom forecasting. However, scaling up to the 
global level presents substantial challenges. These include the selection 
and adaptation of atmospheric correction models, the lack of globally 
validated in situ datasets, differences in satellite mission coverage, and 
the absence of a globally consistent Sentinel-2 water-leaving reflectance 
product for inland waters. Atmospheric correction performance is highly 
sensitive to the OWT encountered (Pahlevan et al., 2021), which com-
plicates algorithm transferability. The European Space Agency Lakes 
Climate Change Initiative (CCI) project is a key initiative in this space, 
aiming to generate consistent global-scale water quality products from 
satellite data, and has been successfully used for variables including 
chl-a (Caroni et al., 2025). Our results further show that even among two 
eutrophic lakes, optimal chl-a algorithm performance and GLM model 
behaviour differ substantially. This highlights a core limitation of global 
process-based modelling: either lakes must be parameterised individu-
ally, requiring considerable effort, or generalised models must be 
accepted with reduced confidence in their outputs. Addressing this 
trade-off will be crucial for the development of robust, global-scale 
bloom forecasting systems. As reanalysis datasets improve and satel-
lite product accuracy increases, near-real-time and broad-scale moni-
toring and forecasting will become a more feasible option for lake 
management.

5. Conclusions

This study demonstrates that integrating MSI chl-a estimates, when 
quality-filtered using CP, significantly enhances GLM-AED model cali-
bration and algal bloom detection. The ability to quantify uncertainties 
in remote sensing-derived chl-a, alongside reductions in validation 
model errors and significant improvements in bloom agreement, un-
derscores the value of this approach and the broader role of remote 
sensing in ecological modelling.

The negative impact of unfiltered MSI chl-a estimates on model 
performance highlights the necessity of quality filtering methods such as 
CP to minimise downstream errors. These findings emphasise the po-
tential of CP-filtered MSI chl-a estimates for improving bloom fore-
casting and supporting more informed lake management decisions. This 
approach provides a robust framework for integrating EO-based water 
quality data into predictive models, with applications extending beyond 
algal blooms. Future research could explore its effectiveness across 
different water systems, EO datasets, and modelling techniques, further 
validating its role in ecological forecasting.
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Code, model and data availability

The code for the conformal prediction framework is available on: 
https://github.com/maudsiebers/Conformal_prediction_Framework

GLM-AED is freely available. In this work Version 3.1.9 of the GLM- 
AED was downloaded and executed in RStudio. For running and visu-
alisation purposes the packages ‘glmtools’(https://github.com/robert 
ladwig/glmtools) and ‘GLM3r’ (https://github.com/robertladwig/ 
GLM3r) were installed from GitHub.

Data for lakes is freely available from the UK Lakes Portal (https: 
//uklakes.ceh.ac.uk), managed by the UK Centre for Ecology & Hy-
drology (UKCEH). For additional data requests, enquiries can be made 
directly to UKCEH. These are the published datasets of relevance for 
Esthwaite Water: (Feuchtmayr et al., 2021, 2024, 2025) and Loch Leven 
(Dudley et al., 2013; Taylor et al., 2021, 2022a, 2022b, 2023)

Sentinel-2 data is publicly available through multiple platforms, with 
the primary source being the Copernicus Open Access Hub (https 
://dataspace.copernicus.eu/explore-data/data-collections/sentine 
l-data/sentinel-2). Additional access points include ESA’s Sentinel Hub, 
Google Earth Engine, NASA Earthdata Search, and AWS Open Data, each 
offering various tools for visualisation and analysis.
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Gurlin, D., Hà, N., Matsushita, B., Moses, W., Greb, S., Lehmann, M.K., Ondrusek, M., 
Oppelt, N., Stumpf, R., 2020. Seamless retrievals of chlorophyll-a from Sentinel-2 
(MSI) and Sentinel-3 (OLCI) in inland and coastal waters: a machine-learning 
approach. Remote Sens. Env. 240. https://doi.org/10.1016/j.rse.2019.111604.

Papadopoulos, H., 2008. Inductive conformal prediction: theory and application to 
neural networks. Tools In Artificial Intelligence. Citeseer.

Ramon, D., Steinmetz, F., Deschamps, P.Y., 2011. Atmospheric correction in presence of 
sun glint: application to MERIS. Opt. Express. 19 (10), 9783–9800. https://doi.org/ 
10.1364/OE.19.009783. Vol. 19, Issue 10, Pp. 9783-9800. 

Rice, E. W., Baird, R. B., & Eaton, A. D. (2017). Standard Methods for the examination of 
water and Wastewater, 23rd edition.
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