Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

DAS-N2N: machine learning distributed acoustic sensing (DAS) signal denoising without clean data

Lapins, S.; Butcher, A.; Kendall, J.-M.; Hudson, T.S.; Stork, A.L.; Werner, M.J.; Gunning, J.; Brisbourne, A.M. ORCID: https://orcid.org/0000-0002-9887-7120. 2024 DAS-N2N: machine learning distributed acoustic sensing (DAS) signal denoising without clean data. Geophysical Journal International, 236 (2). 1026-1041. 10.1093/gji/ggad460

Abstract
This paper presents a weakly supervised machine learning method, which we call DAS-N2N, for suppressing strong random noise in distributed acoustic sensing (DAS) recordings. DAS-N2N requires no manually produced labels (i.e. pre-determined examples of clean event signals or sections of noise) for training and aims to map random noise processes to a chosen summary statistic, such as the distribution mean, median or mode, whilst retaining the true underlying signal. This is achieved by splicing (joining together) two fibres hosted within a single optical cable, recording two noisy copies of the same underlying signal corrupted by different independent realizations of random observational noise. A deep learning model can then be trained using only these two noisy copies of the data to produce a near fully denoised copy. Once the model is trained, only noisy data from a single fibre is required. Using a data set from a DAS array deployed on the surface of the Rutford Ice Stream in Antarctica, we demonstrate that DAS-N2N greatly suppresses incoherent noise and enhances the signal-to-noise ratios (SNR) of natural microseismic icequake events. We further show that this approach is inherently more efficient and effective than standard stop/pass band and white noise (e.g. Wiener) filtering routines, as well as a comparable self-supervised learning method based on masking individual DAS channels. Our preferred model for this task is lightweight, processing 30 s of data recorded at a sampling frequency of 1000 Hz over 985 channels (approximately 1 km of fibre) in <1 s. Due to the high noise levels in DAS recordings, efficient data-driven denoising methods, such as DAS-N2N, will prove essential to time-critical DAS earthquake detection, particularly in the case of microseismic monitoring.
Documents
534376:257201
[thumbnail of Open Access]
Preview
Open Access
ggad460.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (4MB) | Preview
Information
Programmes:
BAS Programmes 2015 > Ice Dynamics and Palaeoclimate
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item