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S U M M A R Y 

This paper presents a weakly supervised machine learning method, which we call DAS- 
N2N, for suppressing strong random noise in distributed acoustic sensing (DAS) recordings. 
DAS-N2N requires no manually produced labels (i.e. pre-determined examples of clean event 
signals or sections of noise) for training and aims to map random noise processes to a chosen 

summary statistic, such as the distribution mean, median or mode, whilst retaining the true 
underlying signal. This is achieved by splicing (joining together) two fibres hosted within a 
single optical cable, recording two noisy copies of the same underlying signal corrupted by 

different independent realizations of random observational noise. A deep learning model can 

then be trained using only these two noisy copies of the data to produce a near fully denoised 

copy. Once the model is trained, only noisy data from a single fibre is required. Using a data 
set from a DAS array deployed on the surface of the Rutford Ice Stream in Antarctica, we 
demonstrate that DAS-N2N greatly suppresses incoherent noise and enhances the signal-to- 
noise ratios (SNR) of natural microseismic icequake events. We further show that this approach 

is inherently more efficient and effective than standard stop/pass band and white noise (e.g. 
Wiener) filtering routines, as well as a comparable self-supervised learning method based on 

masking individual DAS channels. Our preferred model for this task is lightweight, processing 

30 s of data recorded at a sampling frequency of 1000 Hz over 985 channels (approximately 

1 km of fibre) in < 1 s. Due to the high noise levels in DAS recordings, efficient data-driven 

denoising methods, such as DAS-N2N, will prove essential to time-critical DAS earthquake 
detection, particularly in the case of microseismic monitoring. 

Key words: Antarctica; Machine learning; Instrumental noise; Distributed acoustic sensing; 
Earthquake monitoring and test-ban treaty verification; Denoising. 
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1  I N T RO D U C T I O N  

Distributed acoustic sensing (DAS) is a novel form of seismic mon- 
itoring, measuring changes in strain acting along a buried or en- 
cased fibre-optic cable through reflectometry. In recent years, DAS 

has seen a growing range of applications, including passive and 
activ e e xperiments to detect seismic events, monitor urban and an- 
thropo genic acti vity, image the subsurface and monitor changes in 
material and ambient properties (e.g. Dou et al. 2017 ; Ajo-Franklin 
et al. 2019 ; Lindsey et al. 2019 ; Hudson et al. 2021b ; Nayak et al. 
2021 ; Jousset et al. 2022 ; Kennett 2022 ; Zhou et al. 2022 ; van 
den Ende et al. 2023 ). A DAS interrogator unit sends short, finite- 
1026 
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duration light pulses along an optical fibre and measures the phase 
of Rayleigh backscattering caused by small density variations and 
defects in the fibre (Parker et al. 2014 ; Hartog 2017 ; Lindsey et al. 
2020 ). The backscattered light from a given section of fibre re- 
turns to the interrogator with a predictable two-wa y tra veltime: this 
allows any changes in the light’s phase or intensity between succes- 
sive pulses (e.g. from disturbances as a result of incoming seismic 
waves) to be mapped to specific sections along the fibre within some 
kno wn precision, kno wn as the ‘gauge length’ (e.g. Dean et al. 2017 ; 
Hartog 2017 ; Lindsey et al. 2020 ). In this manner, the entire fibre- 
optic cable acts as a series of distributed seismic sensors, sampling 
changes to the strain field acting on the fibre at regularly spaced 
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ntervals along its length (typically shorter than the gauge length;
arker et al. 2014 ; Hartog 2017 ), the locations of which are often
eferred to as ‘channels’. 

Optical fibres have many attractive properties for seismic mon-
toring. The y are fle xib le, durab le, highl y sensiti ve to vibrations
nd changes in strain field (Hartog 2017 ) and can extend many
ilometres from the DAS interrogator unit and power source (e.g.
arker et al. 2014 ; Ajo-Franklin et al. 2019 ; Lindsey et al. 2019 ;
hinohara et al. 2022 ). As such, they are well-suited to seismic
onitoring in harsh or remote environments, such as volcanoes

Jousset et al. 2022 ), regions with extreme climate (e.g. glacial set-
ings; Walter et al. 2020 ; Hudson et al. 2021b ; Zhou et al. 2022 ) and
eneath oceans (Lindsey et al. 2019 ; Shinohara et al. 2022 ). Fur-
hermore, the vast networks of existing telecommunications fibre
resent the opportunity to heavily augment the coverage of existing
eismic networks, both on local and global scales (Ajo-Franklin
t al. 2019 ; Nayak et al. 2021 ; Kennett 2022 ; Shinohara et al.
022 ). 

Ho wever , despite these advantageous properties, optical fibres
re also highly sensitive to temperature (Hartog 2017 ), local distur-
ances from the interrogator (Lindsey et al. 2020 ), ground/coupling
onditions (Hartog et al. 2014 ; Ajo-Franklin et al. 2019 ) and prop-
rties of the fibre/instrument components used (Isken et al. 2022 ),
ost of which are hetero geneousl y distributed along the optical

able, leading to greater levels of seemingly random observational
oise in DAS recordings when compared to conventional seismome-
ers (Hudson et al. 2021b ). DAS fibres are also only sensitive to
long-cab le strain, w hich leads to challenges in recording the full
eismic wavefield and relating measurement units to actual ground
otion. Finally, the large data volumes acquired by sampling along

ong extents of fibre (sometimes on the order of TBs per day) require
ighl y ef ficient and optimized signal processing methods, especiall y
or real-time monitoring operations and earthquake early warning
ystems. 

Optical cables are regularly manufactured with multiple fibres
or added capacity (e.g. for telecommunication providers). For DAS
pplications, additional fibres are typically left unused as DAS inter-
ogators often process measurements from a single light pulse and
bre at a time to avoid interference (Parker et al. 2014 ). Ho wever ,

he availability of multiple fibres can provide highly useful redun-
ancy for enhancing the signal-to-noise ratio (SNR) of any external
ignal through application of so-called ‘weakly supervised’ ma-
hine learning. By splicing (joining together) two fibres at one end
f the cable, the light pulse from the DAS interrogator effectively
ravels ‘there-and-back’ along the length of the cable, recording
wo copies of the same underlying seismic signal but with differ-
nt random measurement noise due to differences in scatterers and
hoton beha viour betw een the two fibres. A deep learning model
an then be trained using only these two noisy copies of the un-
erlying signal to produce a denoised copy of the data through a
ethod known as ‘Noise2Noise’ (N2N; Lehtinen et al. 2018 ), a

orm of weakly supervised machine learning that exploits the point
stimation properties of certain loss functions and does not require
lean (i.e. noise-free) target data or manual curation/labelling for
raining. 

In this paper, we present the first known application of N2N for
uppressing strong random (i.e. incoherent) noise processes in DAS
ata, which we refer to as DAS-N2N. This approach has pre viousl y
een used to suppress synthetically generated noise in individual
hotographic, MRI scan and microscopy images (Lehtinen et al.
018 ; Calvarons 2021 ) but never previously (to our knowledge) to
uppress real noise in continuously acquired noisy DAS or seismic
ata. In Section 2 , we provide an overview of both ‘conventional’
i.e. non-machine learning) and machine learning approaches for
eismic signal noise suppression, including N2N. In Section 3 , we
rovide details of our example data set, acquired by a DAS de-
loyment on the surface of the Rutford Ice Stream in Antarctica.
n Section 4 , we describe the theory behind N2N, and the proce-
ure for training and implementing a DAS-N2N model. In Sec-
ion 5 , we compare icequake data denoised by DAS-N2N against
hree benchmark methods: con ventional Butterw orth bandpass fil-
ering, Wiener filtering, and an existing self-supervised deep learn-
ng method for denoising D AS data, kno wn as jDAS (van den Ende
t al. 2021 ), that also requires no clean target data or manual cu-
ation during model training. The article ends with a discussion of
AS-N2N model performance, generalization to other data sets and

ome concluding remarks in Sections 6 and 7 , respecti vel y. Exam-
le code and data for implementing DAS-N2N have been archived
nd made av ailable b y Lapins et al. ( 2023 ) (see Data Availability
ection). 

 B A C KG RO U N D  

.1 Conventional seismic signal filtering 

ass and stop band filters, designed to remove certain frequencies
rom a recorded signal, are a ubiquitous processing step for sup-
ressing unwanted noise in seismic signals. The general aim is to
dentify a frequency range that contains as much of the desired sig-
al and as a little of the undesired background noise as possible,
ith all other frequencies removed or suppressed by a chosen fil-

er (e.g. Butterworth, Cheb yshe v or Gaussian filters). These filters
re typically applied by convolution of the recorded signal with a
olynomial approximating an idealized filter response (i.e. approx-
mating a uniform and complete response in the pass band with full
ttenuation in the stop band, which cannot be expressed by a finite
rder polynomial; Proakis & Manolakis 1996 ). Although simple,
nterpretable and relati vel y fast for indi vidual seismic traces, such

ethods hav e sev eral dra wbacks, both for D AS applications and for
eismic signals more generally. 

For noise suppression, the greatest drawback of conventional
ass and stop band filters is the inability, by design, to suppress
oise that lies in the same frequency range as the desired signal.
or well-deployed geophones and broadband seismometers, ran-
om measurement noise is considered to be low and signals of
nterest are usually in distinct frequency bands from other external
oherent noise sources (e.g. ocean microseisms in the 0.1–0.5 Hz
ange; Bromirski et al. 2013 ; Koper & Burlacu 2015 ; Lapins et al.
020 ). Ho wever , en vironmental, financial, cultural and political fac-
ors mean that deploying large numbers of high-cost seismometers
n quiet or well-insulated environments is rarely feasible. DAS offers
 relati vel y low-cost, straightforw ard and densel y sampled alterna-
i ve; howe ver, random measurement noise along the fibre is often
bserved to be much stronger than that of geophones (Hudson et al.
021b ; du Toit et al. 2022 ; Isken et al. 2022 ) and occurs across
he entire observed frequency spectrum (see Section 5 ). As such,
he frequency range of interest is much more contaminated by un-
anted noise. Fur ther more, for passive monitoring applications, this

requency range must be assumed a priori , which typically leads
o more conserv ati ve (i.e. wider pass band) filtering and greater
oise contamination. Choice of filter family and polynomial order
s also subject to certain trade-offs, including the degree of am-
litude ‘ripples’ in the pass and stop bands, the abruptness of the
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transition between bands, and susceptibility to detrimental artefacts 
such as ringing, signal polarity changes and non-linear phase shifts 
(e.g. Proakis & Manolakis 1996 ; Scherbaum 2001 ; Havskov & Ot- 
tem öller 2010 ). Finally, and importantly, repeated application of a 
chosen filter over hundreds or thousands of individual DAS chan- 
nels is computationally costly when required for (near-)real-time 
processing and monitoring. 

Some of the drawbacks outlined above can be mitigated: for 
example through use of adaptive algorithms that adjust filter coef- 
ficients or parameters (e.g. Duncan & Beresford 1994 ; Jeng et al. 
2009 ; Isken et al. 2022 ); filtering in both time and space frequency 
( f - k ) domains (e.g. Duncan & Beresford 1994 ; Bacon et al. 2003 ; 
Mousa 2019 ; Hudson et al. 2021b ; Isken et al. 2022 ); applying 
a statistical estimation method for identifying additive or incoher- 
ent noise (e.g. Wiener filters; Williams et al. 2020 ) or combining 
multiple methods (Chen et al. 2023 ). Ho wever , these approaches 
are still limited when noise and signal overlap within a given fre- 
quency range or by their computational demands, model/method 
assumptions, or the requirement for manual parametrization (see 
Section 5 ). 

2.2 Deep learning denoising 

Across the broader fields of science and engineering, noise sup- 
pression (or ‘denoising’) is being increasingly addressed through 
deep learning methods, with the greatest advancements occurring 
in the field of image processing. Unlike linear, f - k (time and space 
frequency) or statistical estimation filters, deep learning models 
are not restricted by explicit statistical assumptions, response trade- 
offs (e.g. choice of filter family or order), or manual parametrization 
(e.g. choosing a pass band or statistical model). Desirably, they have 
the capacity to ‘learn’ empirical, abstract and non-linear hierarchi- 
cal data representations directly from sample data, allowing them 

to perform ef fecti ve signal filtering and feature extraction without 
manual input or prior assumptions on the distribution of the signal 
or noise. Model implementation is also heavily optimizable through 
use of GPUs and compression/pruning strategies (Zhu & Gupta 
2017 ), allowing for rapid signal processing. 

2.2.1 Supervised learning 

Initial success in this area was driven by the ‘standard’ fully super- 
vised paradigm, using a large number of noisy/clean signal pairs 
for model training; that is both noisy and noise-free copies of each 
training sample are available and the model is trained to directly 
map noisy signals to their noise-free counterparts. This approach 
is sometimes referred to as ‘Noise2Clean’ (N2C) in the denois- 
ing literature and has been pre viousl y applied to seismic signals 
with apparent success (Zhu et al. 2019 ; Klochikhina et al. 2020 ; 
Li & Ma 2021 ; Tibi et al. 2021 ; Yang et al. 2022 ). Ho wever , in
many applications, it can be difficult or even impossible to acquire 
sufficient quantities of noise-free or high signal-to-noise recorded 
signals for robust model training, and thus this approach is limited 
in its ‘real-world’ applicability. This situation is particularly true 
in the case of DAS recordings, where the observed data are heav- 
il y contaminated b y strong random noise processes and simulating 
seismic wave propagation to generate realistic noise-free signals 
across a long extent of fibre is computationally intensive and chal- 
lenging to model. This restricted applicability has led to the wider 
development of denoising methods that do not require noise-free 
g round-tr uth signals, such as weakly supervised (Zhou 2018 ; van 
Engelen & Hoos 2020 ) or self-supervised (Ericsson et al. 2022 ) 
learning methods. 

2.2.2 Weakly supervised learning 

Weakly super vised lear ning relaxes the requirement for noise-free 
‘g round-tr uth’ target data during training. One pioneering method 
for weakly supervised denoising, which we base our proposed DAS- 
N2N methodology on, is known as ‘Noise2Noise’ (N2N; Lehtinen 
et al. 2018 ), where the aim is for a model to learn to transform noisy 
images into clean images using only noisy copies of the same image 
as both input and target training data. A N2N model suppresses 
random noise by exploiting the point estimation properties of certain 
loss functions during model training (Lehtinen et al. 2018 ; Pang 
et al. 2021 ); for example, mean squared error (MSE) and mean 
absolute error (MAE) loss functions are minimized by the mean 
and median of a set of observ ations, respecti vel y. Intuiti vel y, as 
long as the noise in the input and target data are independently and 
randomly drawn from some (known or unknown) noise distribution, 
it is impossible for a model to predict the random noise values in 
the target data from the random noise values in the input data. As 
such, to minimize its expected loss, the model learns to map noise 
in the input data to the value of smallest average deviation from 

the noise in the target data (e.g. the mean, median or mode of the 
noise distribution; Lehtinen et al. 2018 ), according to the chosen 
loss function. Simultaneously, as long as the underlying clean signal 
in the input and target data are identical, the model’s expected loss 
is minimized by learning a direct 1-to-1 mapping between the two 
(see Section 4.1 ). 

It has been demonstrated both theoretically and empirically that 
models trained using only noisy signals in this manner can perform 

as well as, or even better than, those trained in a fully supervised 
manner using noisy/clean signal pairs (Lehtinen et al. 2018 ; Pang 
et al. 2021 ). For example, it can be shown that the loss minimization 
problem is ef fecti vel y the same for fully and weakly supervised 
learning and a MSE loss function (Section 4.1 ). 

For DAS, the applicability of N2N is moti v ated b y the fact that 
optical fibres can be spliced so that they ef fecti vel y double-back 
on themselves within their cable sleeve (Fig. 1 ), recording two 
(near-) identical copies of any external seismic source but with 
different independent realizations of any random noise processes 
(Fig. 2 a). Fur ther more, when continuous recordings are available, 
vast training sets of independent noisy signal pairs are readily avail- 
able for training without the need for any manual labelling, provid- 
ing a fully automatable approach that can be applied to any DAS 

deployment. 
The one main drawback of N2N is that, in some situations, record- 

ing multiple noisy copies of the same underlying signal is not pos- 
sib le; for example w hen anal ysing pre viousl y recorded unspliced 
DAS data or using so-called ‘dark’ fibres (existing unused telecom- 
munication fibre networks) that may not al wa ys be feasibly spliced. 
In this case, N2N is not directly applicable, but an extension of this 
method, based on ‘recorrupting’ the recorded signal with additional 
noise (known as ‘Recor rupted-to-Recor rupted’, or R2R; Pang et al. 
2021 ), can be applied. With R2R, the additional noisy copies of 
the signal required for model training are generated (as opposed to 
recorded) using a secondary noise distribution so that the noise in 
each new noisy copy is now independently drawn from a new noise 
distribution. These new noisy copies can then be used to train a 
model in the same manner as N2N, with similar performance (Pang 
et al. 2021 ). Ho wever , sufficiently corrupting the original observed 
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Figure 1. Map and schematic illustration showing the DAS experiment setup. Top left-hand side: map showing geographic location of DAS array (gold 
triangle) on Rutford Ice Stream, Antarctica. Main: Schematic illustration of the D AS experiment. D AS fibre array was deployed in triangular configuration 
on the surface of Rutford Ice Stream, with two single-mode fibres hosted within a single cable jacket spliced at cable end. See Hudson et al. ( 2021a ) and 
Suppor ting Infor mation in Hudson et al. ( 2021b ) for fur ther details. 
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oise to produce independent realizations from a new noise distri-
ution means one must generally have some prior knowledge of the
riginal noise distribution, which is not al wa ys known or may be
hallenging to model. Due to this added non-trivial requirement,
e do not explore this method further in this paper and restrict our

ocus solely on the N2N approach with recorded noisy signal pairs.

.2.3 Self-supervised learning 

n alternative approach that requires no additional noisy or clean
arget data for training (i.e. an unspliced fibre can be used) is self-
uper vised lear ning. Self-super vised lear ning is often for mulated
s learning from ‘fill-in-the-gap’ problems (Ericsson et al. 2022 ),
here some section of input data is hidden or masked and the model

s tasked with predicting the values of the missing data. When
pplied to the task of denoising (sometimes known as ‘Noise2Self’
r ‘Noise2Void’; Krull et al. 2018 ; Batson & Royer 2019 ), the
ntuition behind such an approach is that, through training, the model
ill learn to interpolate or predict missing coherent or broad-scale

ignal features, based on the surrounding data and exposure to many
raining samples, but will be unable to predict random, incoherent or
ne-scale signal features. As with weakly super vised lear ning, the
odel minimizes its expected loss by learning to map the latter to the

alue (or point estimate) of smallest average deviation, according
o some loss function (e.g. MSE). 

One such self-supervised method, known as jDAS, after the con-
ept of j-invariance (Batson & Royer 2019 ), has been previously
pplied to DAS (van den Ende et al. 2021 ). With jDAS, individual
AS channels are dropped during training and the model learns to
redict these missing data using data from neighbouring channels;
hat is b y ef fecti vel y learning to interpolate any coherent signal
cross missing channels. This step of masking and predicting miss-
ng data is then repeated for each DAS channel at run-time (van
en Ende et al. 2021 ). Similarly, Birnie et al. ( 2021 ) apply the same
oncept by treating dense-array post-stack seismic data as a 2-D
mage and masking rectangular/square sections of the image during
raining. Alternati vel y, Liu et al. ( 2022 ) divide the data into odd (in-
ut data) and even (target data) channel numbers and train a model
o map one to the other, ef fecti vel y amounting to the same task as

asking every other channel and predicting the missing data. 

art/ggad460_f1.eps
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Figure 2. Implementing DAS-N2N. (a) Raw data is split into input (Fibre 1) and target (Fibre 2) training data. (b) Data are divided into smaller sections (128 
samples × 96 channels) for model training, with augmentation (vertical/horizontal flipping) randomly applied to each training sample pair. (c) Once the model 
is trained, only the input data (Fibre 1) is required for denoising. 
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Although self-supervised learning has the highly desirable trait
f not requiring any additional clean or noisy copies of the data, its
f fecti veness becomes increasingly limited when noise levels are
igh (van den Ende et al. 2021 ) and the number of DAS channels
o process is large. The desired signal features of interest must be
nterpolated by the model, rather than ‘retained’ through a 1-to-1

apping as in the case of weakly or fully supervised learning, and
hus signal quality can suffer as a result of the same point estimation
roperties (e.g. mapping to average of all possible outcomes) be-
ng used to suppress incoherent and fine-scale noise. Fur ther more,
y masking and predicting only one channel or a small number of
atapoints at a time, self-supervised methods, when formulated as
ll-in-the-gap problems, are an order of magnitude slower than stan-
ard or weakly supervised methods and can become prohibiti vel y
low when the signal sample frequency and number of DAS chan-
els to process are high. 

 DATA  

n this paper, we demonstrate DAS-N2N using data acquired by a
AS array deployed on the surface of the Rutford Ice Stream in
ntarctica (Fig. 1 ). Despite being a low anthropogenic noise envi-

onment, strong random noise processes (e.g. optical noise caused
y random scattering/coupling of photons and environmental fac-
ors) in the raw recorded data from this deployment dominate the
ignal from microseismic icequake events. The deployment consists
f a Silixa iDASv2 interrogator (Parker et al. 2014 ) and a 1 km ca-
le, with a sample frequency of 1000 Hz, channel spacing of 1 m and
auge length of 10 m (see Hudson et al. 2021b for further details).
wo single-mode optical fibres hosted within the cable jacket were
pliced at one end to form a ‘there-and-back’ loop (Fig. 1 ). These
ata were collected to investigate the suitability of DAS for study-
ng natural microseismicity (Hudson et al. 2021b ) and imaging the
ear-surface ice structure (Zhou et al. 2022 ). 

Over the course of 14 d (2020-01-11–2020-01-24), the DAS
bre-optic cable was repeatedly deployed in different horizontal
rrangements on the surface of the ice stream, comprising a linear,
riangular and ‘hockey stick’ array. The cable was coupled to the
round by placing it in a skidoo track and back-covering with snow.
he data presented here were chosen from the time period during
hich the fibre was deployed in a triangular configuration (2020-
1-17 0100–0500 UTC), with each linear section of the triangle
pproximately 330 m in length. Data recorded between 0100 and
300 UTC were used for model training, with the remaining two
ours data used as test data. As the DAS cables were deployed
orizontall y and P w aves arri ve at the surface with near-vertical
ncidence due to the presence of a low-velocity firn layer, only S -
ave phase arrivals are observed by the fibre during the deployment

Hudson et al. 2021b ). The example icequake events presented in
ection 5 were detected using a localized Radon-transform-based
etection method (Butcher et al. 2021 ). 

 M E T H O D S  

.1 DAS-N2N theory 

eismic signals are contaminated by both coherent (i.e. seismic
aves generated by some undesired external source) and incoherent

i.e. random) noise. A noisy signal, y , can be expressed as a sum of
ndependent signal components, such that 

y = x + n , (1) 
here x is a single- or multidimensional array representing the un-
erlying ‘clean’ signal from any recordable external seismic source
including external coherent noise sources) and n are samples ran-
omly drawn from some noise distribution, with one sample of n
rawn for each element in x . The random noise distribution is often
ssumed to be Gaussian, as a result of the Central Limit Theorem,
ut this is not a requirement for N2N. 

When DAS fibres are spliced, a second copy of the underlying
ignal is near-simultaneously recorded, with 

˜ y = x + ˜ n , (2) 

here ˜ y is a second noisy copy of clean signal x , corrupted by
andom noise samples ˜ n (drawn independently of noise samples n ).

e observe that samples drawn from n and ˜ n need not be locally
dentically and independently distributed (i.i.d.; see Section 5 ). 

W ith D AS-N2N, these tw o noisy signals, y and ˜ y , serve as in-
ut and target data, respecti vel y, for training a neural network,
 θ , parametrized by model weights, θ . This neural network is
rained to minimise the expected loss between f θ ( y ) and ˜ y ac-
ording to some loss function, L . For an MSE loss function (i.e.

L ( x , y ) = 

1 
N 

∑ 

( x − y ) 2 ), this expected loss can be expressed as 

E { L [ f θ ( y i ) , ̃  y i ] } = E 

{ 

1 

M 

M ∑ 

i= 0 
[ ( x i + ˜ n i ) − f θ ( y i ) ] 

2 

} 

, (3) 

here i is training sample index and M is the number of training
amples in a training batch. Eq. ( 3 ) can be tri viall y e xpanded (P ang
t al. 2021 ), such that 

 

{ 

1 

M 

M ∑ 

i= 0 
[ ( x i + ˜ n i ) − f θ ( y i ) ] 

2 

} 

 E 

{ 

1 

M 

M ∑ 

i= 0 
[ x i − f θ ( y i ) ] 

2 

} 

+ E 

{ 

2 

M 

M ∑ 

i= 0 
˜ n i x i 

} 

E 

{ 

2 

M 

M ∑ 

i= 0 
˜ n i f θ ( y i ) 

} 

+ E 

{ 

1 

M 

M ∑ 

i= 0 
˜ n 

2 
i 

} 

, (4) 

here the first term, E 

{ 
1 
M 

∑ M 

i= 0 [ x i − f θ ( y i ) ] 
2 
} 

, is equi v alent to

he expected MSE loss when training using noisy/clean training
airs (i.e. the standard supervised case). As long as n and ˜ n are
ndependent, the remaining expectation terms are constant (Pang
t al. 2021 ): the two intermediate terms are equal to zero if sig-
al, noise and model output are all zero-mean (enforced by simple
ubtraction of recorded signal mean, a near-ubiquitous seismic pre-
rocessing step) and summed over suf ficientl y large M , with the
nal expectation term equal to the variance of the noise distribution

n the target data. As such, the loss minimization task when training
 model with DAS-N2N can be expressed as 

E { L [ f θ ( y i ) , ̃  y i ] } = E 

{ 

1 

M 

M ∑ 

i= 0 
[ x i − f θ ( y i ) ] 

2 

} 

+ c, (5) 

hich is equi v alent to the standard noisy/clean supervised case, up
o a constant, c , relating to the variance of the noise. It is for this
eason that DAS-N2N can perform as well as a model trained with
oisy/clean signal data, with the advantage that all recorded data
an be used for model training without any manual curation or the
eed to ‘generate’ noisy/clean signal pairs. 
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4.2 Implementing DAS-N2N 

As mentioned, a DAS-N2N model is trained by using data recorded 
by one of the spliced fibres as input data, with data recorded by the 
other spliced fibre as target data (Fig. 2 a). The only pre-processing 
steps applied in this work are to remove the signal mean (across all 
channels) and normalize the data (i.e. divide through by the standard 
deviation). When training a model using data from longer fibres that 
have spatially changing or highly non-linear noise processes (e.g. 
from hanging sections or light decay) channel-wise normalisation 
will likely be required to ensure the data remain centred around 
zero and consistently normalised. The raw data were originally 
stored as 30 s TDMS files (the standard file type for data acquired 
using a Silixa iDAS interrogator; Parker et al. 2014 ), and thus 
these pre-processing steps are applied to 30 s sections of data at a 
time. 

The input and target data are then split into corresponding 128 ×
96 size arrays (no. of time samples × no. of DAS channels, respec- 
ti vel y), with a batch size of 24 used for model training (Fig. 2 b). 
Training data are augmented by randomly flipping both the input 
and target data along their vertical (time) and horizontal (channel) 
axes. The loss between the model-processed input data and the noisy 
target data is calculated for each batch using an MSE loss function, 
with model weights updated using the Adam optimization algorithm 

(Kingma & Ba 2014 ). The model was trained for 30 epochs, with 
learning rate decreasing between epochs from 10 −3 to 10 −5 over the 
course of model training. 

N2N is based on exploiting the point estimation properties of L2 
and L1 loss functions (Lehtinen et al. 2018 ), and therefore its per- 
formance is relati vel y agnostic to choice of model architecture (i.e. 
any model with sufficient capacity can be trained to perform N2N 

denoising). Ho wever , certain model architectures and components 
will have advantageous qualities for denoising, such as hierarchi- 
cal feature representation (e.g. from convolutional layers) and use 
of dense/residual connections (e.g. to retain underlying signal as it 
passes from layer to layer). With this in mind, we choose to imple- 
ment DAS-N2N using a shallow, 3-layer U-Net (Ronneberger et al. 
2015 , see the Appendix). By limiting the number of model layers and 
using skip connections, the underlying signal can be easily retained 
from lay er -to-lay er and computational processing time is kept low. 
The final 3-layer DAS-N2N model has just 47 065 model parame- 
ters, processing 30 seconds of recorded data across 985 channels 
(30 000 × 985 data points) in < 1 s (average processing time over 
10 runs using Python 3.7.12, TensorFlow version 2.3.0 (Abadi et al. 
2015 ) and a single NVIDIA GeForce RTX 2080 Ti GPU). 

Following training, only the input data (i.e. data from a single 
fibre) are required for data processing (Fig. 2 c). The normalization 
step applied during training is also reversed at this stage (i.e. the 
model-processed data are multiplied by the original data standard 
deviation) to recover absolute signal amplitude. 

4.3 jDAS implementation 

For comparison with our proposed DAS-N2N methodology, we 
implement the self-supervised jDAS approach described by van den 
Ende et al. ( 2021 ), using the same model architecture as our DAS- 
N2N model and applying the same data normalization/augmentation 
steps (Section 4.2 ), to serve as a benchmark for comparable ‘noisy 
data only’ machine learning approaches. The data are split into 2048 
× 11 data blocks for model training, as proposed by van den Ende 
et al. ( 2021 ), with a mask randomly applied to a single DAS channel 
for each training sample. 
Both the DAS-N2N and jDAS models are trained using the same 
3-layer U-Net architecture, MSE loss function, Adam optimizer, 
learning rate schedule and number of epochs for direct comparison 
of method ef fecti veness. 

4.4 Conventional bandpass filtering 

For comparison with standard seismic filtering steps, we bandpass 
filter the raw DAS data between 10 and 100 Hz, based on icequake 
signal characteristics from Hudson et al. ( 2021b ), using a 4th or- 
der Butterworth infinite impulse response (IIR) filter. We apply a 
two-pass filter to remove any nonlinear phase shift, allowing for 
more direct comparison between methods (Section 5 ). Filtering is 
performed using the open-source ObsPy Python library (Beyreuther 
et al. 2010 ; Megies et al. 2011 ; Krischer et al. 2015 ), which uses 
optimized low-level C programming language routines from the 
popular and widely used SciPy library (Virtanen et al. 2020 ). But- 
terworth filters have a near-uniform response in the pass band and 
are thus a popular choice for seismic signal processing as they ad- 
equately retain underlying signal amplitude information used for 
further seismic signal analysis (e.g. earthquake magnitude estima- 
tion). This near-uniform response also provides a benchmark for 
comparing absolute signal amplitudes against DAS-N2N and jDAS 

processing methods. 

4.5 Wiener filtering 

Wiener filtering is a classical technique for removing additive white 
noise and is commonly used to suppress unwanted incoherent noise 
in seismic data. These filters estimate the power of the underlying 
signal and additive noise by calculating the mean and variance 
over localised regions of the data, and optimise the separation of 
these processes through minimising an MSE loss function. These 
filters work best when the noise is constant-power (‘white’) additive 
noise, such as Gaussian noise, and provide a useful comparison 
for benchmarking the performance of DAS-N2N for suppressing 
incoherent noise in raw DAS data. 

We apply a Wiener filter to our data with a window size of 7 ×7, 
which is the size of the receptive field for the 3-layer U-Net used 
to implement DAS-N2N and jDAS (i.e. the area of input data that 
a deep learning model can ‘see’, given its depth, filter kernel size, 
etc.). Smaller window sizes are less ef fecti ve at suppressing inco- 
herent noise, and larger window sizes more aggressi vel y suppress 
underlying signal. Filtering is performed using the widely used, 
open-source SciPy library (Virtanen et al. 2020 ). 

5  R E S U LT S  

5.1 Denoising example #1 (in-sample data) 

Fig. 3 shows the S -wave arrivals from two icequakes recorded by 
the DAS deployment. These two events occur during the two hours 
of continuous data (2020-01-17 0100–0300 UTC) used for model 
training and are thus regarded as ‘in-sample’ data (i.e. data the 
model has ‘seen’ during training). 

F rom F ig. 3 , it is clear that the ra w recorded D AS data are cor-
r upted by ver y strong random noise (Fig. 3 a), with the two S -wave 
arri v als (arri ving at approximatel y 0.4 and 0.55 s on DAS chan- 
nel 0, respecti vel y) almost completel y indistinguishable from the 
random background noise. The intensity of this noise varies spa- 
tially along the fibre but appears to show some uniformity over 
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Figure 3. In-sample example of two icequakes ( S -wave arri v als onl y) recorded b y DAS deployment (time in seconds after 2020-01-17 01:30:19.232 UTC). (a) 
Ra w D AS data. (b) Butterw orth (2-pass, 4th order) 10–100 Hz bandpass filtered D AS data. (c) W iener filtered (7 ×7 windo w size) D AS data. (d) jD AS filtered 
D AS data. (e) D AS-N2N filtered D AS data. Icequake S w aves arri ve at DAS channel 0 at time 0.4 and 0.55 s, respecti vel y. Strain rate is recorded in units of 
strain/s (counts). 
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mall sections (i.e. vertical streaks of high intensity noise are visi-
le over multiple contiguous channels). This suggests that the noise
n these data may not be independent across neighbouring chan-
els (a required assumption for jDAS individual channel masking
rocedure). 

Application of bandpass or Wiener filtering (Figs 3 b and c) clearly
mproves the signal-to-noise ratio (SNR) of these arri v als, along
ith that of the surface waves produced by the D AS po wer gen-

rator visible at each end of the fibre (channels 0–100 and 850–
86). Ho wever , the higher intensity vertical noise streaks present
n the raw data are still present, particularly in the Wiener filtered
ata. SNR also appears to be improved over the raw data when
sing either the jDAS (Fig. 3 d) or DAS-N2N (Fig. 3 e) models,
lthough the degree of noise suppression clearly differs between
ethods. Data processed by the jDAS model appears to still be

trongly contaminated by random noise, including the same higher
ntensity noise streaks present in the raw and bandpass/Wiener fil-
ered data, whereas, of all the methods presented, the DAS-N2N
odel appears to perform the greatest degree of background noise

uppression (Fig. 3 d), without any discernible noise streaks (noisy
hannels), and is therefore likely to yield the greatest improvement
n SNR. 
o  
To confirm these observations, we examine estimates of local
NR determined using semblance (a measure of signal similarity
cross DAS channels; Neidell & Taner 1971 ). A moving window of
ize 19 time samples x 13 DAS channels is applied to the data, with
hannel-wise cross-correlation and a minimum correlation coeffi-
ient of 0.7 used to correct for any local moveout within a window.
emblance is then calculated for each moveout-corrected window
sing the formula 

S = 

∑ N 
i= 1 

(∑ M 

j= 1 x i j 

)2 

M 

∑ N 
i= 1 

∑ M 

j= 1 x 
2 
i j 

, (6) 

here x ij is the moveout-corrected DAS data with time index i and
AS channel j . Eq. ( 6 ) ef fecti vel y represents the ratio of signal
oherency to total signal energy. This value can then be used to
stimate local SNR (Bakulin et al. 2022 ) by 

NR local = S/ (1 − S) . (7) 

Intuiti vel y, when random noise levels are low, coherent phase
rri v al signals will be very similar across neighbouring DAS chan-
els, resulting in a high semblance score, S , and thus a high estimate
f SNR, according to eq. ( 7 ). On the other hand, signals that are
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Figure 4. Local signal-to-noise ratio (SNR) estimates for each example in Fig. 3 . SNR is calculated using semblance (eq. 7 ) and a 13-channel × 19-sample 
2-D moving window. 
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corrupted by strong random noise will ha ve low er similarity across 
neighbouring channels and therefore yield a lower semblance score, 
S , resulting in a lower estimate of SNR. Of all the methods used, 
DAS-N2N results in the highest SNR for these two S -wave arrivals 
(Fig. 4 e). This is true regardless of window size or chosen summary 
statistic (e.g. maximum, mean, median or quantile) used to compare 
local SNR for an arri v al, and is also true for all events examined 
across this DAS deployment. The jDAS model (Fig. 4 d) yields a 
higher SNR than the raw data (Fig. 4 a) but fails to suppress back- 
ground noise as well as conventional bandpass filtering (Fig. 4 b), 
Wiener filtering (Fig. 4 c) and DAS-N2N (Fig. 4 e). 

Fig. 5 shows a single DAS channel trace for each noise suppres- 
sion method (top of each panel), along with their corresponding 
time–frequency spectrograms (bottom of each panel). From the 
spectrogram of the raw data (Fig. 5 a), the random measurement 
noise appears to follow a ‘blue noise’ process, with the power or 
intensity of the noise increasing with frequency and remaining (lo- 
call y) time-inv ariant. This observ ation could be useful for other 
machine learning DAS denoising methods, such as R2R or gen- 
erating noisy/clean signal pairs for super vised lear ning, where the 
recorded signal must be corrupted to generate new, independent 
noise samples for model training. 

From these individual traces and spectrograms, it is evident that 
the DAS-N2N model yields the greatest degree of noise suppres- 
sion, with both S-wave arrivals clearly visible against background 
noise in both time (Fig. 5 e, top) and time–frequency (Fig. 5 e, bot- 
tom) domains. Fur ther more, the DAS-N2N spectrog ram (Fig. 5 e, 
bottom) demonstrates that this method goes beyond simple spectral 
filtering: noise within the 10–100 Hz range, which encompasses 
the dominant frequencies of the two recorded phase arri v als, is also 
greatly suppressed when compared with bandpass filtering (Fig. 5 b), 
and low-amplitude high-frequency signal components ( > 100 Hz) 
are also retained. It is in this manner that DAS-N2N and other ma- 
chine learning methods can exceed the performance of conventional 
stop/pass band filtering. 

Although, in relative terms, DAS-N2N signals are stronger (with 
respect to background noise), absolute signal amplitudes after DAS- 
N2N processing are weaker than their corresponding bandpass filter 
benchmark (by a factor of approximately 4/5; see vertical-axis labels 
on traces in Fig. 5 ). This 4/5 scaling appears to be consistent across 
all ev ents e xamined from this deployment (Butcher et al. 2021 ). This 
amplitude dif ference likel y relates to signal leakage, where some of 
the desired underlying signal is suppressed with the noise, and is a 
common issue with denoising methods based on MAE and MSE loss 
functions (e.g. Birnie & Alkhalifah 2022 ), and where the raw data 
are very noisy or large regions of the underlying data are ‘empty’ 
(i.e. vast majority of the data contain no events; see Section 6 ). A 

similar degree of signal leakage occurs with the Wiener filtered data 
(Fig. 5 c), which is also optimised using an MSE loss function. 

5.2 Denoising example #2 (out-of-sample data) 

In Fig. 6 , we present another short section of recorded DAS 

data from a time period outside of our training set (2020-01-17 
04:42:07.903 UTC). This section was chosen to demonstrate the 
performance of our model on so-called ‘out-of-sample’ data, with 
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Figure 5. Individual DAS trace (top panel) and corresponding spectrogram (bottom panel) for DAS channel 255 in each example in Fig. 3 . Strain rate is 
recorded in units of strain/s (counts). 
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hree S -w ave arri v als from discrete icequake e vents (arri v al times
n DAS channel 0 at approximately 0.4, 0.63 and 0.95 s, respec-
i vel y) observed in the bandpass/Wiener filtered, jDAS denoised and
AS-N2N denoised data (Figs 6 b–e). 
F rom F ig. 6 , it is clear that performance of all methods on out-

f-sample data is similar to that on in-sample data (Fig. 3 ), with
AS-N2N unequi vocall y performing the greatest degree of noise

uppression (Fig. 6 e). This suggests that the DAS-N2N model has
een adequately trained to generalize to sections of data outside of
he training set and can be used for continual monitoring for this
pecific deployment. The DAS-N2N model also yields the highest
ocal SNR for all three S -w ave arri v als (ag ain, reg ardless of window
ize or chosen summary statistic; Fig. 7 e), with bandpass filtering
lso performing better than Wiener filtering and the jDAS model
Figs 7 b–d). 

As with the in-sample data, Fig. 8 shows the trace and spec-
rogram for an individual DAS channel processed by each method
or this out-of-sample section of data. The three S -wave arrivals
re difficult to discern in any of the traces or spectrograms except
or in the DAS-N2N case (Fig. 8 e), where all three arri v als appear
s distinct features in both the time (top panel) and time–frequency
bottom panel) domains. Again, the raw observational noise appears
o broadly follow a blue noise process, albeit with an apparent high
requency ‘ridge’ at approximately 285 Hz (Fig. 8 a). Unlike the
ther methods, our DAS-N2N model adequately suppresses noise
cross the full spectrum (including the frequency band encompass-
ng the phase arri v als) and retains weaker high-frequency signal
omponents (Fig. 8 e), a feat beyond the capability of standard spec-
ral filtering methods. The approximately 4/5 scaling of absolute
ignal amplitudes (i.e. signal leakage) for DAS-N2N and Wiener
ltering when compared with bandpass filtering is also present in

his example. 

 D I S C U S S I O N  

n terms of random (incoherent) noise suppression, DAS-N2N un-
qui vocall y performs better than conventional Butterworth band-
ass/Wiener filtering and a comparable self-supervised machine
earning approach (jDAS) for the data presented here. This im-
roved performance is immediately apparent in plots of the pro-
essed data (Figs 3 and 6 ), where vertical bands of higher intensity
oise over contiguous channels are suppressed onl y b y DAS-N2N
as their locations differ between the two spliced fibres), and when
stimates of SNR are determined through semb lance (F igs 4 and
 ). Spectrograms from individual DAS channels (Figs 5 and 8 )
how that part of this improved performance relates to the ability of
achine learning models to suppress noise that lies in the same fre-

uency band as the desired underlying signal. Such a feat will never
e fully achievable for filters that rely on isolating or suppressing
ertain frequency bands, even when such techniques are enhanced

art/ggad460_f5.eps
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Figure 6. Out-of-sample example of three icequakes ( S -wave arrivals only) recorded by DAS deployment (time in seconds after 2020-01-17 04:42:07.903 
UTC). (a) Raw DAS data. (b) Butterworth (2-pass, 4th order) 10–100 Hz bandpass filtered DAS data. (c) Wiener filtered (7 ×7 window size) DAS data. (d) 
jD AS filtered D AS data. (e) D AS-N2N filtered D AS data. Icequake S w aves arri ve at DAS channel 0 at time 0.4, 0.63 and 0.95 s, respecti vel y. Strain rate is 
recorded in units of strain/s (counts). 
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through adaptive parametrization algorithms or the use of both tem- 
poral and spatial frequencies. Fur ther more, common yet undesired 
causal filtering artefacts, such as precursory ringing before phase 
arri v als and signal polarity changes, will not be present in DAS- 
N2N processed data as the model processes the raw data directly 
and such features would only serve to increase model loss between 
the processed data and the target data. We note, ho wever , that our 
DAS-N2N model does exhibit a degree of signal leakage, consis- 
tently reducing the absolute amplitude of the underlying signal by 
a factor of 1/5. Extensive experimentation with model depth, ker- 
nel size, choice of loss function (e.g. MAE, Huber), pre-processing 
steps (e.g. median removal and quantile normalization to reduce 
the impact of outliers), and architecture style (e.g. ResNet) did not 
yield any consistent improvement in this regard. As such, the issue 
of signal leakage is one that cannot be tri viall y solved here, and 
w e lea ve this for future areas of research. It is worth mentioning 
that, regardless of this observed signal leakage, data processed by 
DAS-N2N exhibits higher signal-to-noise levels than any of the 
other methods presented, and its GPU-optimised implementation is 
also much more efficient (two of the primary factors controlling 
the ef fecti veness of subsequent imaging/e vent detection techniques 
and the viability of the method for processing large DAS data sets). 
Fur ther more, once trained, our DAS-N2N model also shows an im- 
pressiv e de gree of generalisation to other iDAS data sets, without 
the need for any retraining or fine-tuning (Fig. 9 ). 

Fig. 9 shows application of our pre-trained Antarctica model 
on data collected during a 4-d DAS experiment conducted on two 
submarine cables extending off the U.S. west coast from Pacific 
City, Oregon (Wilcock & OOI 2023 ). The south-most cab le, w hich 
we examine here (Fig. 9 ), was interrogated by an iDASv3 DAS 

interrogator and extends over 80 km offshore. Large amplitude, 
long period ocean microseisms are clearly visible over background 
noise in both the unfiltered raw (Fig. 9 a) and DAS-N2N processed 
(Fig. 9 d) data. This is most apparent in the individual channel traces, 
where DAS-N2N filters strong high-frequency noise contaminating 
these long period signals (Figs 9 a and d, bottom). Application of 
a 10 Hz high-pass filter (Fig. 9 b) reveals the presence of a lower 
amplitude b lue w hale ‘A’ call (vertical pulse-like signal observed 
approximately 40 km along fibre; Wilcock et al. 2023 ) and a much 
higher degree of incoherent noise as you go further along the fibre 
(due to decay of the interrogator light source). Subsequent appli- 
cation of DAS-N2N (Fig. 9 e) greatly suppresses incoherent noise 
along the full extent of the fibre, revealing the individual pulses of 
the b lue w hale ‘A’ call (as well as other fin whale calls) in incredible 
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Figure 7. Local SNR estimates for each example in Fig. 6 . SNR is calculated using semblance and a 13-channel × 19-sample 2-D moving window. 
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etail (Fig. 9 f). It is likely that DAS-N2N will also generalise well
o other iDAS data sets (as this was the interrogator model used to
cquire its training data), but will almost certainly need retraining to
erform well on data collected by other interrogator models (due to
ifferences in light source po wer , components used, measurement
tandards, etc.). 

By learning to map random noise to the distribution mean, DAS-
2N lear ns to perfor m the equi v alent of a large-N stack (sum or

v erage) ov er many noisy copies of the signal, analogous to the
veraging of many short, independent, noisy exposures acquired
uring long-exposure low-light photography (Lehtinen et al. 2018 ).
he advantage of DAS-N2N over simple stacking, however, is that

t only requires the acquisition of two noisy copies of the data
or training, and only a single noisy copy of the data once trained.
ur ther more, the noise in DAS-N2N processed data will be mapped

o its distribution mean, whereas the noise in stacked data will only
e mapped to its (statistically weaker) point-wise sample mean. 

The DAS-N2N approach, in general, is an order of magnitude
aster than self-supervised ‘fill-in-the-gap’ approaches, such as
DAS (Figs 3 and 6 ), as the latter’s masking procedure means it

ust process N times more data (where 1/ N is the fraction of in-
ut data masked). When compared with a jDAS model trained with
he same model architecture, training hyperparameters and data pre-
rocessing steps, DAS-N2N also performs better at the task of noise
uppression on the microseismic icequake data presented here. In
eneral, self-super vised lear ning methods will likely struggle to
atch or exceed the performance of weakly super vised lear ning
ethods, particularly on data with very high noise levels, as they
re tasked with interpolating missing sections of data, which will
l wa ys suffer from a degree of averaging over all possible values.
n the other hand, weakly and fully super vised lear ning methods
ave the complete unmasked signal present in both the input and
arget data, meaning a direct 1-to-1 mapping can, theoretically, be
earned. 

In terms of computational efficiency, our 3-layer DAS-N2N
odel processes 30 s of recorded data in less than 1 s (Figs 3e and
 e) using the TensorFlow (version 2.3.0) Python framework and
 single NVIDIA GeForce RTX 2080 Ti GPU. This is more than
wice as fast as conventional channel-wise bandpass filtering using
ptimized low-level C programming language routines (Figs 3b and
 b). Any further algorithmic or filtering steps that yield improve-
ents over bandpass filtering (Isken et al. 2022 ; Chen et al. 2023 )
ill obviously have further computational demands, making them

ncreasingly less feasible for real-time passive monitoring purposes.
Ar guably, the lar gest observed drawback of DAS-N2N against the

ther noise suppression methods presented is the degree of apparent
ignal leakage observed after data processing. This signal leakage
s most likely a consequence of using an MSE loss function during
raining, but could also be due to unforeseen issues with our data pre-
nd post-processing steps (e.g. dividing and rescaling by standard
eviation of raw data) or an engineering aspect of the two fibres (e.g.
hannels on two fibres not lining up exactly). In any case, the degree
f signal leakage appears to be consistent across observed signals
n the data presented here and therefore, once a consistent scaling
etween DAS-N2N and bandpass filtered event signal amplitudes
as been determined, one can apply a simple correction (e.g. for
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Figure 8. Individual DAS trace (top panel) and corresponding spectrogram (bottom panel) for DAS channel 587 in each example in Fig. 6 . Strain rate is 
recorded in units of strain/s (counts). 
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earthquake magnitude and source parameter estimation). Ho wever , 
we do not perform any correction here in order to keep processing 
methods as transparent, comparable and simple as possible. 

Another apparent drawback of all the methods presented is the 
inability to suppress unwanted coherent noise (e.g. the surface waves 
produced by the power generator for this DAS deployment). At 
present, this is likely still best performed by standard frequency 
filtering techniques (e.g. stop band/‘notch, filters), as such processes 
tend to produce signals with predictable and narrow-band frequency 
content (e.g. 33 and 66 Hz for the power generator surface waves in 
Figs 3 and 6 ; Hudson et al. 2021b ). 

Finally, in terms of model architecture, we follow Lehtinen et al. 
( 2018 ) and van den Ende et al. ( 2021 ) in using a simple U-Net 
architecture (Ronneberger et al. 2015 ). Ho wever , there are likely to 
be more ef fecti ve model design choices for DAS-N2N and jDAS 

denoising than the ones chosen in these studies. Identifying optimal 
model architectures and training hyperparameters is often a chal- 
lenging and sizeable task, involving either e xtensiv e manual trial- 
and-error or computationally e xpensiv e iterativ e search strate gies 
(e.g. Elsken et al. 2019 ; Hutter et al. 2019 ; White et al. 2023 ). We 
therefore focus the scope of this paper on the general applicability of 
N2N as a simple, ef fecti v e strate gy for denoising spliced-fibre DAS 

data without any clean training data or manual data curation. Fur- 
thermore, by demonstrating the effectiveness of DAS-N2N using a 
very small model (by deep learning standards), we provide evidence 
that DAS-N2N processing can be applied rapidly (well within ‘real- 
time’ constraints) and could be suitable for lo w-po wered devices 
and edge networks. 

7  C O N C LU S I O N S  

In this paper, we demonstrate the use of a weakly supervised ma- 
chine learning method for fully automated random noise suppres- 
sion in DAS data (which we call DAS-N2N after the corresponding 
N2N technique in image processing; Lehtinen et al. 2018 ). The 
method is ideally suited to DAS and other distributed optical fibre 
measurements (e.g. distributed temperature sensing; DTS) due to 
the ability to simultaneously record data across two spliced fibres 
within a single cable jacket. Adv antageousl y, a DAS-N2N model 
can be trained end-to-end without any manual curation or labelling: 
simply, a section of data recorded on one of the spliced fibres serves 
as input data, with the corresponding section of data recorded on 
the other spliced fibre serving as target data (Figs 2 a and b). Once 
trained, the model only requires input data from a single unspliced 
fibre (Fig. 2 c), meaning there is no increase in data volumes to be 
stored after model training. Given the model’s ability to generalise 
to other DAS settings, or if fibres can be temporarily (i.e. mechani- 
cally) or more permanently (i.e. fusion) spliced at some later point 
in time to facilitate model retraining, this approach can be applied 
retroacti vel y to existing deployments with unspliced fibres. 
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Figure 9. DAS data recorded by Wilcock & OOI (2023) on submarine cable extending off the Oregon coast, USA (time given in seconds after 2021-11-02 
10:36:09.839 UTC). Top panel: data for all DAS channels between 20 and 60 km along south cable. Bottom panel: data for individual DAS channel (40.06 km 

along fibre). (a) Raw DAS data. (b) Butterworth (2-pass, 4th order) 10 Hz highpass filtered DAS data. (c) Zoomed in version of highpass filtered data in (b). 
(d) D AS-N2N filtered D AS data. (e) Application of Butterworth 10 Hz highpass filter , follo wed by D AS-N2N. (f) Zoomed in version of highpass filtered + 

DAS-N2N processed data in (e). Strain rate is recorded in units of strain/s (counts). 
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We demonstrate that DAS-N2N is inherently more ef fecti ve and
fficient than conventional bandpass filtering, Wiener filtering and
elf-super vised lear ning approaches. In par ticular , D AS-N2N is able
o suppress noise lying within the same frequency range as the sig-
al of interest (which is not possible for frequency-based filtering)
nd is an order of magnitude faster than self-supervised learning,
ue to the latter’s masking procedure. Fur ther more, the presence
f the complete unmasked underlying signal in both the input and
arget data when training a DAS-N2N model means that the signal
an be retained through a 1-to-1 mapping, whereas self-supervised
earning ef fecti vel y perfor ms a for m of interpolation to predict the

asked signal, which becomes more challenging as noise levels
ncrease. Lastly, we demonstrate that a DAS-N2N model can be ex-
remely lightweight (e.g. three model layers) and efficient, process-
ng data in a fraction of the acquisition time (1/30 in the examples
resented here) when optimized with a single GPU, and faster than
tandard frequency filtering routines optimized using compiled low-
e vel pro gramming languages, such as C. This offers the possibility
f such models being further optimized, compiled and compressed
or processing on lo w-po wered devices and edge networks, which
ill be crucial for offshore or remote earl y w arning monitoring

ettings. 
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DATA  AVA I L A B I L I T Y  

The seismic data will be made available through the UK NERC Polar 
Data Centre. At the time of submission, the models, example data 
and code to reproduce the results in this paper were made avail- 
able on GitHub ( https://github.com/sachalapins/DAS-N2N ), with 
the version associated with this paper archived through Zenodo 
(Lapins et al. 2023 , doi:10.5281/zenodo.7825683). 
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P P E N D I X :  M O D E L  A RC H I T E C T U R E  

able A1 gives a summary of the U-Net model architecture (Ron-
eberger et al. 2015 ) used to implement DAS-N2N in this study.
rior to model training, model weights were initialized following
lorot & Bengio ( 2010 ). No batch normalization, dropout or other

egularization techniques were used. 
-N2N in this study. Output shape given in rows 
ble parameters in model layer. All convolutions 
are followed by leaky ReLU activation function 
e 2 × 2 repeats data in each row and column. 

m # Function 

0 
40 Conv 3 × 3 then LeakyReLU 

0 Max Pool 2 × 2 
08 Conv 3 × 3 then LeakyReLU 

0 Upsample 2 × 2 
0 Concatenate with output of conv00 
784 Conv 3 × 3 then LeakyReLU 

784 Conv 3 × 3 then LeakyReLU 

9 Conv 1 × 1 
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