Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

An integrated modelling approach for assessing the effect of multiscale complexity on groundwater source yields

Upton, K.A.; Jackson, C.R.; Butler, A.P.; Jones, M.A.. 2020 An integrated modelling approach for assessing the effect of multiscale complexity on groundwater source yields. Journal of Hydrology, 588, 125113. 10.1016/j.jhydrol.2020.125113

Abstract
A new multi-scale groundwater modelling methodology is presented to simulate pumped water levels in abstraction boreholes within regional groundwater models, providing a robust tool for assessing the sustainable yield of supply boreholes and improving our understanding of groundwater availability during drought. A 3D borehole-scale model, which solves the Darcy-Forchheimer equation in cylindrical co-ordinates to simulate both linear and non-linear radial flow to a borehole in a heterogeneous aquifer, is embedded within a Cartesian grid, using a hybrid radial-Cartesian finite difference method. The local-scale model is coupled to a regional groundwater model, ZOOMQ3D, using the OpenMI model linkage software, providing a flexible and efficient tool for assessing the behaviour of a groundwater source within its regional hydrogeological context during historic droughts and under climate change. The advantages of the new method are demonstrated through application to a Chalk supply borehole in the UK.
Documents
528190:163844
[thumbnail of Upton_etal_CoupledModel_JoH_Revision_FINAL_NoChangesMarked.pdf]
Preview
Upton_etal_CoupledModel_JoH_Revision_FINAL_NoChangesMarked.pdf - Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (1MB) | Preview
Information
Programmes:
BGS Programmes 2020 > Environmental change, adaptation & resilience
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item