nerc.ac.uk

Modelling permafrost thickness in Great Britain over glacial cycles

Scheidegger, Johanna M.; Jackson, Christopher R.; McEvoy, Fiona M.; Norris, Simon. 2019 Modelling permafrost thickness in Great Britain over glacial cycles. Science of The Total Environment, 666. 928-943. 10.1016/j.scitotenv.2019.02.152

Before downloading, please read NORA policies.
[thumbnail of Open Access Paper]
Preview
Text (Open Access Paper)
1-s2.0-S0048969719306400-main.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview

Abstract/Summary

Like other countries, the UK has opted for deep geological disposal for the long-term, safe management of higher-activity radioactive waste. However, a site and a geological environment have yet to be identified to host a geological disposal facility. In considering its long-term safety functionality, it is necessary to consider natural processes, such as permafrost development, that have the potential to alter the geological environment over the time-scale of glacial-interglacial cycles. We applied a numerical model to simulate the impact of long-term climatic variability on groundwater flow and permafrost dynamics in two contrasting geological settings in Great Britain: (i) higher strength rocks (HSR) overlain by higher permeability sandstones with a high topographic gradient (GS1); (ii) a mixed sedimentary sequence of high and low permeability rocks resting on igneous HSR with a very low topographic gradient (GS2). We evaluated the sensitivity of simulated permafrost thickness to a variety of climatic and subsurface conditions. Uncertainty in the scaling of the surface temperature time-series, 10–25 °C below present day temperature, has the largest impact on maximum permafrost thickness, PFmax, compared to other variables. However, considering plausible parameter ranges for UK settings, PFmax is up to twice as sensitive to changes in thermal conductivity and geothermal heat flux than to changes in porosity. Heat advection only affects modelled PFmax for high hydraulic conductivity rocks and if permafrost is considered to be relatively permeable. Whilst local differences in permafrost thickness of tens of meters, caused by variations in heat advection, are of minor importance over glacial-interglacial cycles, heat advection can be important in the development of taliks and the maintenance of a more active groundwater flow system. We conclude that it is likely to be important to simulate the effect of heat advection on coupled permafrost and groundwater flow systems in settings containing higher permeability lithological sequences.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1016/j.scitotenv.2019.02.152
ISSN: 00489697
Additional Keywords: GroundwaterBGS, Groundwater, Groundwater modelling
Date made live: 09 May 2019 14:49 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/523266

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...