Osborne, Stephanie; Pandey, Divya; Mills, Gina; Hayes, Felicity
ORCID: https://orcid.org/0000-0002-1037-5725; Harmens, Harry
ORCID: https://orcid.org/0000-0001-8792-0181; Gillies, David; Büker, Patrick; Emberson, Lisa.
2019
New insights into leaf physiological responses to ozone for use in crop modelling [in special issue: Ozone tolerance mechanisms]
Plants, 8 (4), 84.
30, pp.
10.3390/plants8040084
Abstract
Estimating food production under future air pollution and climate conditions in scenario analysis depends on accurately modelling ozone (O3) effects on yield. This study tests several assumptions that form part of published approaches for modelling O3 effects on photosynthesis and leaf duration against experimental data. In 2015 and 2016, two wheat cultivars were exposed in eight hemispherical glasshouses to O3 ranging from 22 to 57 ppb (24 h mean), with profiles ranging from raised background to high peak treatments. The stomatal O3 flux (Phytotoxic Ozone Dose, POD) to leaves was simulated using a multiplicative stomatal conductance model. Leaf senescence occurred earlier as average POD increased according to a linear relationship, and the two cultivars showed very different senescence responses. Negative effects of O3 on photosynthesis were only observed alongside O3-induced leaf senescence, suggesting that O3 does not impair photosynthesis in un-senesced flag leaves at the realistic O3 concentrations applied here. Accelerated senescence is therefore likely to be the dominant O3 effect influencing yield in most agricultural environments. POD was better than 24 h mean concentration and AOT40 (accumulated O3 exceeding 40 ppb, daylight hours) at predicting physiological response to O3, and flux also accounted for the difference in exposure resulting from peak and high background treatments.
Documents
522774:139553
N522774JA.pdf
- Published Version
Available under License Creative Commons Attribution 4.0.
Available under License Creative Commons Attribution 4.0.
Download (2MB) | Preview
Information
Programmes:
UKCEH and CEH Science Areas 2017-24 (Lead Area only) > Soils and Land Use
Library
Statistics
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
![]() |
