Glider observations of enhanced deep water upwelling at a shelf break canyon: a mechanism for cross-slope carbon and nutrient exchange
Porter, M.; Inall, M.E.; Hopkins, J. ORCID: https://orcid.org/0000-0003-1504-3671; Palmer, M.R.; Dale, A.C.; Aleynik, D.; Barth, J.A.; Mahaffey, C.; Smeed, D.A. ORCID: https://orcid.org/0000-0003-1740-1778. 2016 Glider observations of enhanced deep water upwelling at a shelf break canyon: a mechanism for cross-slope carbon and nutrient exchange. Journal of Geophysical Research: Oceans, 121 (10). 7575-7588. 10.1002/2016JC012087
Before downloading, please read NORA policies.Preview |
Text (Open Access paper)
jgrc21955.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (1MB) | Preview |
Abstract/Summary
Using underwater gliders we have identified canyon driven upwelling across the Celtic Sea shelf-break, in the vicinity of Whittard Canyon. The presence of this upwelling appears to be tied to the direction and strength of the local slope current, which is in itself highly variable. During typical summer time equatorward flow, an unbalanced pressure gradient force and the resulting disruption of geostrophic flow can lead to upwelling along the main axis of two small shelf break canyons. As the slope current reverts to poleward flow, the upwelling stops and the remnants of the upwelled features are mixed into the local shelf water or advected away from the region. The upwelled features are identified by the presence of sub-pycnocline high salinity water on the shelf, and are upwelled from a depth of 300 m on the slope, thus providing a mechanism for the transport of nutrients across the shelf break onto the shelf.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1002/2016JC012087 |
ISSN: | 21699275 |
Date made live: | 13 Feb 2017 10:29 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/516172 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year