Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Glider observations of enhanced deep water upwelling at a shelf break canyon: a mechanism for cross-slope carbon and nutrient exchange

Porter, M.; Inall, M.E.; Hopkins, J. ORCID: https://orcid.org/0000-0003-1504-3671; Palmer, M.R.; Dale, A.C.; Aleynik, D.; Barth, J.A.; Mahaffey, C.; Smeed, D.A. ORCID: https://orcid.org/0000-0003-1740-1778. 2016 Glider observations of enhanced deep water upwelling at a shelf break canyon: a mechanism for cross-slope carbon and nutrient exchange. Journal of Geophysical Research: Oceans, 121 (10). 7575-7588. 10.1002/2016JC012087

Abstract
Using underwater gliders we have identified canyon driven upwelling across the Celtic Sea shelf-break, in the vicinity of Whittard Canyon. The presence of this upwelling appears to be tied to the direction and strength of the local slope current, which is in itself highly variable. During typical summer time equatorward flow, an unbalanced pressure gradient force and the resulting disruption of geostrophic flow can lead to upwelling along the main axis of two small shelf break canyons. As the slope current reverts to poleward flow, the upwelling stops and the remnants of the upwelled features are mixed into the local shelf water or advected away from the region. The upwelled features are identified by the presence of sub-pycnocline high salinity water on the shelf, and are upwelled from a depth of 300 m on the slope, thus providing a mechanism for the transport of nutrients across the shelf break onto the shelf.
Documents
516172:109856
[thumbnail of Open Access paper]
Preview
Open Access paper
jgrc21955.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
Information
Programmes:
NOC Programmes > Marine Physics and Ocean Climate
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item