Geochemistry of PM10 over Europe during the EMEP intensive measurement periods in summer 2012 and winter 2013
Alastuey, Andrés; Querol, Xavier; Aas, Wenche; Lucarelli, Franco; Pérez, Noemí; Moreno, Teresa; Cavalli, Fabrizia; Areskoug, Hans; Balan, Violeta; Catrambone, Maria; Ceburnis, Darius; Cerro, José C.; Conil, Sébastien; Gevorgyan, Lusine; Hueglin, Christoph; Imre, Kornelia; Jaffrezo, Jean-Luc; Leeson, Sarah R.; Mihalopoulos, Nikolaos; Mitosinkova, Marta; O'Dowd, Colin D.; Pey, Jorge; Putaud, Jean-Philippe; Riffault, Véronique; Ripoll, Anna; Sciare, Jean; Sellegri, Karine; Spindler, Gerald; Yttri, Karl Espen. 2016 Geochemistry of PM10 over Europe during the EMEP intensive measurement periods in summer 2012 and winter 2013. Atmospheric Chemistry and Physics, 16 (10). 6107-6129. 10.5194/acp-16-6107-2016
Before downloading, please read NORA policies.Preview |
Text
N514034JA.pdf - Published Version Available under License Creative Commons Attribution. Download (3MB) | Preview |
Abstract/Summary
The third intensive measurement period (IMP) organised by the European Monitoring and Evaluation Programme (EMEP) under the UNECE CLTRAP took place in summer 2012 and winter 2013, with PM10 filter samples concurrently collected at 20 (16 EMEP) regional background sites across Europe for subsequent analysis of their mineral dust content. All samples were analysed by the same or a comparable methodology. Higher PM10 mineral dust loadings were observed at most sites in summer (0.5–10 µg m−3) compared to winter (0.2–2 µg m−3), with the most elevated concentrations in the southern- and easternmost countries, accounting for 20–40 % of PM10. Saharan dust outbreaks were responsible for the high summer dust loadings at western and central European sites, whereas regional or local sources explained the elevated concentrations observed at eastern sites. The eastern Mediterranean sites experienced elevated levels due to African dust outbreaks during both summer and winter. The mineral dust composition varied more in winter than in summer, with a higher relative contribution of anthropogenic dust during the former period. A relatively high contribution of K from non-mineral and non-sea-salt sources, such as biomass burning, was evident in winter at some of the central and eastern European sites. The spatial distribution of some components and metals reveals the influence of specific anthropogenic sources on a regional scale: shipping emissions (V, Ni, and SO42−) in the Mediterranean region, metallurgy (Cr, Ni, and Mn) in central and eastern Europe, high temperature processes (As, Pb, and SO42−) in eastern countries, and traffic (Cu) at sites affected by emissions from nearby cities.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.5194/acp-16-6107-2016 |
UKCEH and CEH Sections/Science Areas: | Dise |
ISSN: | 1680-7316 |
Additional Information. Not used in RCUK Gateway to Research.: | Open Access paper - full text available via Official URL link. |
NORA Subject Terms: | Atmospheric Sciences |
Date made live: | 26 Jul 2016 10:48 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/514034 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year