Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China

Xu, W.; Luo, X.S.; Pan, Y.P.; Zhang, L.; Tang, A.H.; Shen, J.L.; Zhang, Y.; Li, K.H.; Wu, Q.H.; Yang, D.W.; Zhang, Y.Y.; Xue, J.; Li, W.Q.; Li, Q.Q.; Tang, L.; Lu, S.H.; Liang, T.; Tong, Y.A.; Liu, P.; Zhang, Q.; Xiong, Z.Q.; Shi, X.J.; Wu, L.H.; Shi, W.Q.; Tian, K.; Zhong, X.H.; Shi, K.; Tang, Q.Y.; Zhang, L.J.; Huang, J.L.; He, C.E.; Kuang, F.H.; Zhu, B.; Liu, H.; Jin, X.; Xin, Y.J.; Shi, X.K.; Du, E.Z.; Dore, A.J.; Tang, S. ORCID: https://orcid.org/0000-0002-7814-3998; Collett Jr., J.L.; Goulding, K.; Sun, Y.X.; Ren, J.; Zhang, F.S.; Liu, X.J.. 2015 Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmospheric Chemistry and Physics, 15 (21). 12345-12360. 10.5194/acp-15-12345-2015

Abstract
A Nationwide Nitrogen Deposition Monitoring Network (NNDMN) containing 43 monitoring sites was established in China to measure gaseous NH3, NO2, and HNO3 and particulate NH4+ and NO3− in air and/or precipitation from 2010 to 2014. Wet/bulk deposition fluxes of Nr species were collected by precipitation gauge method and measured by continuous-flow analyzer; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet/bulk Nr deposition. On a national basis, the annual average concentrations (1.3–47.0 μg N m−3) and dry plus wet/bulk deposition fluxes (2.9–83.3 kg N ha−1 yr−1) of inorganic Nr species are ranked by land use as urban > rural > background sites and by regions as north China > southeast China > southwest China > northeast China > northwest China > Tibetan Plateau, reflecting the impact of anthropogenic Nr emission. Average dry and wet/bulk N deposition fluxes were 20.6 ± 11.2 (mean ± standard deviation) and 19.3 ± 9.2 kg N ha−1 yr−1 across China, with reduced N deposition dominating both dry and wet/bulk deposition. Our results suggest atmospheric dry N deposition is equally important to wet/bulk N deposition at the national scale. Therefore, both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health.
Documents
513001:93616
[thumbnail of N513001JA.pdf]
Preview
N513001JA.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
Information
Programmes:
CEH Science Areas 2013- > Biosphere-Atmosphere Interactions
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item