Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Comparison of soil greenhouse gas fluxes from extensive and intensive grazing in a temperate maritime climate

Skiba, U. ORCID: https://orcid.org/0000-0001-8659-6092; Jones, S.K.; Drewer, J. ORCID: https://orcid.org/0000-0002-6263-6341; Helfter, C. ORCID: https://orcid.org/0000-0001-5773-4652; Anderson, M.; Dinsmore, K.; McKenzie, R. ORCID: https://orcid.org/0009-0009-9928-8780; Nemitz, E. ORCID: https://orcid.org/0000-0002-1765-6298; Sutton, M.A. ORCID: https://orcid.org/0000-0002-6263-6341. 2013 Comparison of soil greenhouse gas fluxes from extensive and intensive grazing in a temperate maritime climate [in special issue: Nitrogen and global change] Biogeosciences, 10 (2). 1231-1241. 10.5194/bg-10-1231-2013

Abstract
Greenhouse gas (GHG) fluxes from a seminatural, extensively sheep-grazed drained moorland and intensively sheep-grazed fertilised grassland in South East (SE) Scotland were compared over 4 yr (2007–2010). Nitrous oxide (N2O) and methane (CH4) fluxes were measured by static chambers, respiration from soil plus ground vegetation by a flow-through chamber, and the net ecosystem exchange (NEE) of carbon dioxide (CO2) by eddy-covariance. All GHG fluxes displayed high temporal and interannual variability. Temperature, radiation, water table height and precipitation could explain a significant percentage of seasonal and interannual variations. Greenhouse gas fluxes were dominated by the net ecosystem exchange of CO2 at both sites. Net ecosystem exchange of CO2 and respiration was much larger on the productive fertilised grassland (−1567 and 7157 g CO2eq m−2 yr−1, respectively) than on the seminatural moorland (−267 and 2554 g CO2eq m−2 yr−1, respectively). Large ruminant CH4 (147 g CO2eq m−2 yr−1) and soil N2O (384 g CO2eq m−2 yr−1) losses from the grazed grassland counteracted the CO2 uptake by 34%, whereas the small N2O (0.8 g CO2eq m−2 yr−1) and CH4 (7 g CO2eq m−2 yr−1) emissions from the moorland only impacted the NEE flux by 3%. The 4-yr average GHG budget for the grazed grassland was −1034 g CO2eq m−2 yr−1 and −260 g CO2eq m−2 yr−1 for the moorland.
Documents
501064:38130
[thumbnail of N501064JA.pdf]
Preview
N501064JA.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
Information
Programmes:
CEH Programmes 2012 > Biogeochemistry
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item