Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Influence of energetic wind and waves on gas transfer in a large wind–wave tunnel facility

Rhee, T.S.; Nightingale, P.D.; Woolf, D.K.; Caulliez, G.; Bowyer, P.; Andreae, M.O.. 2007 Influence of energetic wind and waves on gas transfer in a large wind–wave tunnel facility. Journal of Geophysical Research, 112 (C5). C05027. 10.1029/2005JC003358

Abstract
Air–water gas exchange experiments were carried out in a large wind wave tunnel in Marseille, France, to investigate gas transfer processes under energetic wind and wave fields, where macroscale breaking waves create bubble plumes (white caps) and turbulence on the water surface. We measured the gas transfer velocities of N2O, DMS, He, SF6, CH3Br, and total air. Their diffusivity and solubility span a large range, allowing us to investigate gas transfer mechanisms under a variety of physical conditions. We observed that the gas transfer velocities varied with friction velocity in a linear manner. Gas transfer in the presence of pure wind waves is generally consistent with the surface renewal model, as the gas transfer velocity has a strong dependence on diffusivity with an exponent of 0.53(±0.02). Contrary to expectations, the bubble plumes generated by breaking waves contributed relatively little in our pure wind wave experiments. Superposition of mechanically generated waves onto the wind waves in the high wind regime attenuated DMS gas transfer (as a function of friction velocity) across the air–water interface by ~20% compared with gas transfer under pure wind waves, implying suppression of gas transfer directly across the sheared water surface. Greater transfer of less soluble gases may result from bubble-mediated gas transfer.
Documents
Full text not available from this repository.
Information
Programmes:
UNSPECIFIED
Library
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item