Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Coupled interannual Rossby waves in a quasigeostrophic ocean–atmosphere model

Farneti, R.. 2007 Coupled interannual Rossby waves in a quasigeostrophic ocean–atmosphere model. Journal of Physical Oceanography, 37 (5). 1192-1214. 10.1175/JPO3061.1

Abstract
Rossby wave propagation is investigated in the framework of an idealized middle-latitude quasigeostrophic coupled ocean–atmosphere model. The Rossby waves are observed to propagate faster than both the classical linear theory (unperturbed solution) and the phase speed estimates when the effect of the zonal mean flow is added (perturbed solution). Moreover, using statistical eigentechniques, a clear coupled Rossby wave mode is identified between a baroclinic oceanic Rossby wave and an equivalent barotropic atmospheric wave. The spatial phase relationship of the coupled wave is similar to the one predicted by Goodman and Marshall, suggesting a positive ocean–atmosphere feedback. It is argued that oceanic Rossby waves can be efficiently coupled to the overlying atmosphere and that the atmospheric coupling is capable of adding an extra speedup to the wave; in fact, when the ocean is simply forced, the Rossby wave propagation speed approaches the perturbed solution.
Documents
Full text not available from this repository.
Information
Programmes:
UNSPECIFIED
Library
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item