Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus waves
Ni, Binbin; Thorne, Richard M.; Meredith, Nigel P ORCID: https://orcid.org/0000-0001-5032-3463; Horne, Richard B. ORCID: https://orcid.org/0000-0002-0412-6407; Shprits, Yuri Y.. 2011 Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus waves. Journal of Geophysical Research, 116 (A4), A04219. 17, pp. 10.1029/2010JA016233
Before downloading, please read NORA policies.Preview |
Text
Copyright 2011 by the American Geophysical Union. jgra21112.pdf - Published Version Download (2MB) | Preview |
Preview |
Text (CORRECTION)
Copyright 2011 by the American Geophysical Union. jgra50154.pdf - Published Version Download (492kB) | Preview |
Abstract/Summary
Using the statistical wave power spectral profiles obtained from CRRES wave data within the 0000–0600 MLT sector under different levels of geomagnetic activity and a modeled latitudinal variation of wave normal angle distribution, we examine quantitatively the effects of lower band and upper band chorus on resonant diffusion of plasma sheet electrons for diffuse auroral precipitation in the inner magnetosphere. Whistler mode chorus-induced resonant scattering of plasma sheet electrons is geomagnetic activity dependent, varying from above the strong diffusion limit (timescale of an hour) during active times (AE* > 300 nT) with peak wave amplitudes of >50 pT to weak scattering (timescale of a day) during quiet conditions (AE* < 100 nT) with typical wave amplitudes of ≤10 pT. Chorus waves present at different magnetic latitudes make distinct contributions to the net diffusion rates of plasma sheet electrons, largely depending on the latitudinal variation of wave power. Upper band chorus is the controlling scattering process for electrons from ∼100 eV to ∼2 keV, and lower band chorus is most effective for precipitating the higher energy (>∼2 keV) plasma sheet electrons in the inner magnetosphere. Efficient scattering by the combination of active time lower band and upper band chorus can cover a wide energy range from ∼100 eV to >100 keV and a broad interval of equatorial pitch angle, thereby accounting for the formation of observed electron pancake distribution. Decreased chorus scattering during less disturbed times can also modify the magnetic local time distribution of plasma sheet electrons. Compared to the effects of chorus waves, electron cyclotron harmonic wave-induced resonant diffusion coefficients are at least 1 order of magnitude smaller and are negligible under any geomagnetic condition, indicating that chorus waves act as the major contributor dominantly responsible for diffuse auroral precipitation in the inner magnetosphere. Chorus-driven momentum diffusion and mixed diffusion are also important. Lower band and upper band chorus can cause strong momentum diffusion of plasma sheet electrons in the energy ranges of ∼500 eV to ∼2 keV and ∼2 keV to ∼3 keV, respectively, which can significantly result in energization of the electrons and attenuation of the waves.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1029/2010JA016233 |
Programmes: | BAS Programmes > Polar Science for Planet Earth (2009 - ) > Climate |
ISSN: | 0148-0227 |
Additional Information. Not used in RCUK Gateway to Research.: | Correction to this article at https://agupubs.onlinelibrary.wiley.com/doi/10.1002/jgra.50154 |
Additional Keywords: | diffuse auroral precipitation, resonant wave-particle interactions, whistler mode chorus, quasi-linear diffusion coefficients, electron pancake distributio |
NORA Subject Terms: | Atmospheric Sciences |
Date made live: | 20 Jun 2011 14:13 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/14488 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year