Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 1. Evaluation for electrostatic electron cyclotron harmonic waves
Ni, Binbin; Thorne, Richard M.; Horne, Richard B. ORCID: https://orcid.org/0000-0002-0412-6407; Meredith, Nigel P. ORCID: https://orcid.org/0000-0001-5032-3463; Shprits, Yuri Y.; Chen, Lunjin; Li, Wen. 2011 Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 1. Evaluation for electrostatic electron cyclotron harmonic waves. Journal of Geophysical Research, 116 (A4), A04218. 18, pp. 10.1029/2010JA016232
Before downloading, please read NORA policies.Preview |
Text
Copyright 2011 by the American Geophysical Union. jgra21111.pdf - Published Version Download (2MB) | Preview |
Preview |
Text (CORRECTION)
Copyright 2011 by the American Geophysical Union. jgra50154.pdf - Published Version Download (492kB) | Preview |
Abstract/Summary
Using statistical wave power spectral profiles obtained from CRRES and the latitudinal distributions of wave propagation modeled by the HOTRAY code, a quantitative analysis has been performed on the scattering of plasma sheet electrons into the diffuse auroral zone by multiband electrostatic electron cyclotron harmonic (ECH) emissions near L = 6 within the 0000–0600 MLT sector. The results show that ECH wave scattering of plasma sheet electrons varies from near the strong diffusion rate (timescale of an hour or less) during active times with peak wave amplitudes of an order of 1 mV/m to very weak scattering (on the timescale of >1 day) during quiet conditions with typical wave amplitudes of tenths of mV/m. However, for the low-energy (∼100 eV to below 2 keV) electron population mainly associated with the diffuse auroral emission, ECH waves are only responsible for rapid pitch angle diffusion (occasionally near the limit of strong diffusion) for a small portion of the electron population with pitch angles αeq < 20°, dependent on electron energy and geomagnetic activity level. ECH scattering alone cannot account for the rapid loss of plasma sheet electrons during transport from the nightside to the dayside, nor can it explain the formation of the pancake electron distributions strongly peaked at αeq > 70°. Computations of the bounce-averaged coefficients of momentum diffusion and (pitch angle, momentum) mixed diffusion indicate that both mixed diffusion and energy diffusion of plasma sheet electrons due to ECH waves are very small compared to pitch angle diffusion and that ECH waves have little effect on local electron acceleration. Consequently, the multiple harmonic ECH emissions cannot play a dominant role in the occurrence of diffuse auroral precipitation near L = 6, and other wave-particle interaction mechanisms, such as whistler mode chorus-driven resonant scattering, are required to explain the global distribution of diffuse auroral precipitation and the formation of the pancake distribution in the inner magnetosphere.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1029/2010JA016232 |
Programmes: | BAS Programmes > Polar Science for Planet Earth (2009 - ) > Climate |
ISSN: | 0148-0227 |
Additional Information. Not used in RCUK Gateway to Research.: | Correction to this article at https://agupubs.onlinelibrary.wiley.com/doi/10.1002/jgra.50154 |
Additional Keywords: | diffuse auroral precipitation, resonant wave-particle interactions, electrostatic, electron cyclotron, harmonic waves, quasi-linear diffusion coefficients |
NORA Subject Terms: | Atmospheric Sciences |
Related URLs: | |
Date made live: | 20 Jun 2011 13:49 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/14486 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year