nerc.ac.uk

A superposed epoch investigation of the relation between magnetospheric solar wind driving and substorm dynamics with geosynchronous particle injection signatures

Boakes, P.D.; Milan, S.E.; Abel, G.A.; Freeman, M.P. ORCID: https://orcid.org/0000-0002-8653-8279; Chisham, G. ORCID: https://orcid.org/0000-0003-1151-5934; Hubert, B.. 2011 A superposed epoch investigation of the relation between magnetospheric solar wind driving and substorm dynamics with geosynchronous particle injection signatures. Journal of Geophysical Research, 116 (A1), A01214. 12, pp. 10.1029/2010JA016007

Before downloading, please read NORA policies.
[thumbnail of jgra20969.pdf]
Preview
Text
Copyright 2011 by the American Geophysical Union.
jgra20969.pdf - Published Version

Download (892kB) | Preview

Abstract/Summary

We report a superposed epoch analysis of the hemispheric open magnetic flux, maximum nightside auroral intensity, geomagnetic activity, and solar wind and interplanetary magnetic field conditions around the time of substorm onset for three distinct categories of substorms defined by their energetic particle injection signatures. Substorms identified from global auroral imagery are classified into one of three categories based on their energetic particle injection signatures as seen at geosynchronous orbit by the Los Alamos National Laboratory spacecraft. Category 1 events are associated with a "classic" substorm injection, category 2 events show varied activity (i.e., energetic enhancements not following the evolution expected for classic substorms), and category 3 events show no apparent injection activity. The superposed epoch analysis reveals that the three distinct particle injection categories exhibit distinct differences in the level and continuity of magnetospheric driving by the solar wind, such that category 1 events can be described as classic substorm events, category 2 as continuously driven events, and category 3 as weak events. The results of this study suggest that the level and continuity of the dayside solar wind driving of the magnetosphere during substorms have a direct impact on the injection of energetic particles to geosynchronous orbit at substorm onset. These results could have considerable value in empirical predictions of the space weather environment.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1029/2010JA016007
Programmes: BAS Programmes > Polar Science for Planet Earth (2009 - ) > Environmental Change and Evolution
ISSN: 0148-0227
Additional Keywords: substorms
NORA Subject Terms: Physics
Atmospheric Sciences
Date made live: 25 May 2011 11:03 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/14087

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...