nerc.ac.uk

Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter

Annan, J.D.; Hargreaves, J.C.; Edwards, N.R.; Marsh, R.. 2005 Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Modelling, 8 (1-2). 135-154. 10.1016/j.ocemod.2003.12.004

Full text not available from this repository.

Abstract/Summary

We describe the development of an efficient method for parameter estimation and ensemble forecasting in climate modelling. The technique is based on the ensemble Kalman filter and is several orders of magnitude more efficient than many others which have been previously used to address this problem. As well as being theoretically (near-)optimal, the method does not suffer from the 'curse of dimensionality' and can comfortably handle multivariate parameter estimation. We demonstrate the potential of this method in identical twin testing with an intermediate complexity coupled AOGCM. The model's climatology is successfully tuned via the simultaneous estimation of 12 parameters. Several minor modifications arc described by which the method was adapted to a steady state (temporally averaged) case. The method is relatively simple to implement, and with only O(50) model runs required, we believe that optimal parameter estimation is now accessible even to computationally demanding models.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1016/j.ocemod.2003.12.004
Date made live: 13 Oct 2004 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/109726

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...