nerc.ac.uk

Slope failure on the flanks of the western Canary Islands

Masson, D.G.; Watts, A.B.; Gee, M.J.R.; Urgeles, R.; Mitchell, N.C.; Le Bas, T.P. ORCID: https://orcid.org/0000-0002-2545-782X; Canals, M.. 2002 Slope failure on the flanks of the western Canary Islands. Earth-Science Reviews, 57 (1/2). 1-35. 10.1016/S0012-8252(01)00069-1

Full text not available from this repository.

Abstract/Summary

Landslides have been a key process in the evolution of the western Canary Islands. The younger and more volcanically active Canary Islands, El Hierro, La Palma and Tenerife, show the clearest evidence of recent landslide activity. The evidence includes landslide scars on the island flanks, debris deposits on the lower island slopes, and volcaniclastic turbidites on the floor of the adjacent ocean basins. At least 14 large landslides have occurred on the flanks of the El Hierro, La Palma and Tenerife, the majority of these in the last 1 million years, with the youngest, on the northwest flank of El Hierro, as recent as 15 thousand years in age. Older landslides undoubtedly occurred, but are difficult to quantify because the evidence is buried beneath younger volcanic rocks and sediments. Landslides on the Canary Island flanks can be categorised as debris avalanches, slumps or debris flows. Debris avalanches are long runout catastrophic failures which typically affect only the superficial part of the island volcanic sequence, up to a maximum thickness of 1 to 2 km. They are the commonest type of landslide mapped. In contrast, slumps move short distances and are deep-rooted landslides which may affect the entire thickness of the volcanic edifice. Debris flows are defined as landslides which primarily affect the sedimentary cover of the submarine island flanks. Some landslides are complex events involving more than one of the above end-member processes. Individual debris avalanches have volumes in the range of 50–500 km3, cover several thousand km2 of seafloor, and have runout distances of up to 130 km from source. Overall, debris avalanche deposits account for about 10% of the total volcanic edifices of the small, relatively young islands of El Hierro and La Palma. Some parameters, such as deposit volumes and landslide ages, are difficult to quantify. The key characteristics of debris avalanches include a relatively narrow headwall and chute above 3000 m water depth on the island flanks, broadening into a depositional lobe below 3000 m. Debris avalanche deposits have a typically blocky morphology, with individual blocks up to a kilometre or more in diameter. However, considerable variation exists between different avalanche deposits. At one extreme, the El Golfo debris avalanche on El Hierro has few large blocks scattered randomly across the avalanche surface. At the other, Icod on the north flank of Tenerife has much more numerous but smaller blocks over most of its surface, with a few very large blocks confined to the margins of the deposit. Icod also exhibits flow structures (longitudinal shears and pressure ridges) that are absent in El Golfo. The primary controls on the block structure and distribution are inferred to be related to the nature of the landslide material and to flow processes. Observations in experimental debris flows show that the differences between the El Golfo and Icod landslide deposits are probably controlled by the greater proportion of fine grained material in the Icod landslide. This, in turn, relates to the nature of the failed volcanic rocks, which are almost entirely basalt on El Hierro but include a much greater proportion of pyroclastic deposits on Tenerife. Landslide occurrence appears to be primarily controlled by the locations of volcanic rift zones on the islands, with landslides propagating perpendicular to the rift orientation. However, this does not explain the uneven distribution of landslides on some islands which seems to indicate that unstable flanks are a ‘weakness’ that can be carried forward during island development. This may occur because certain island flanks are steeper, extend to greater water depths or are less buttressed by the surrounding topography, and because volcanic production following a landslide my be concentrated in the landslide scar, thus focussing subsequent landslide potential in this area. Landslides are primarily a result of volcanic construction to a point where the mass of volcanic products fails under its own weight. Although the actual triggering factors are poorly understood, they may include or be influenced by dyke intrusion, pore pressure changes related to intrusion, seismicity or sealevel/climate changes. A possible relationship between caldera collapse and landsliding on Tenerife is not, in our interpretation, supported by the available evidence.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1016/S0012-8252(01)00069-1
ISSN: 0012-8252
Additional Keywords: canary islands, landslides, debris avalanches, slumps, debris flows
Date made live: 28 Jun 2004 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/106115

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...