Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Mass balance, flow and subglacial processes of a modelled Younger Dryas ice cap in Scotland

Golledge, Nicholas R.; Hubbard, Alun L.; Sugden, David E.. 2009 Mass balance, flow and subglacial processes of a modelled Younger Dryas ice cap in Scotland. Journal of Glaciology, 55 (189). 32-42. 10.3189/002214309788608967

Abstract
We use an empirically validated high-resolution three-dimensional ice-sheet model to investigate the mass-balance regime, flow mechanisms and subglacial characteristics of a simulated Younger Dryas Stadial ice cap in Scotland, and compare the resulting model forecasts with geological evidence. Input data for the model are basal topography, a temperature forcing derived from GRIP δ18O fluctuations and a precipitation distribution interpolated from modern data. The model employs a positive-degree-day scheme to calculate net mass balance within a domain of 112 500 km2, which, under the imposed climate, gives rise to an elongate ice cap along the axis of the western Scottish Highlands. At its maximum, the ice cap is dynamically and thermally zoned, reflecting topographic and climatic controls, respectively. In order to link these palaeoglaciological conditions to geological interpretations, we calculate the relative balance between sliding and creep within the simulated ice cap, forecast areas of the ice cap with the greatest capacity for basal erosion and predict the likely pattern of subglacial drainage. We conclude that ice flow in central areas of the ice cap is largely due to internal deformation, and is associated with geological evidence of landscape preservation. Conversely, the distribution of streamlined landforms is linked to faster-flowing ice whose velocity is predominantly the result of basal sliding. The geometry of the main ice mass focuses subglacial erosion in the mid-sections of topographic troughs, and produces glaciohydraulic gradients that favour subglacial drainage through low-order arterial routes.
Documents
7909:4246
[thumbnail of JGLAC_08J014_R1_small.pdf]
Preview
JGLAC_08J014_R1_small.pdf

Download (2MB)
Information
Programmes:
UNSPECIFIED
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item