nerc.ac.uk

Optimal sampling strategy for estimation of spatial genetic structure in tree populations.

Cavers, S ORCID: https://orcid.org/0000-0003-2139-9236; Degen, B; Caron, H; Lemes, M; Gribel, R; Margis, R; Salgueiro, F; Lowe, AJ. 2005 Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity, 95 (4). 281-289. 10.1038/sj.hdy.6800709

Full text not available from this repository.

Abstract/Summary

Fine-scale spatial genetic structure (SGS) in natural tree populations is largely a result of restricted pollen and seed dispersal. Understanding the link between limitations to dispersal in gene vectors and SGS is of key interest to biologists and the availability of highly variable molecular markers has facilitated fine-scale analysis of populations. However, estimation of SGS may depend strongly on the type of genetic marker and sampling strategy (of both loci and individuals). To explore sampling limits, we created a model population with simulated distributions of dominant and codominant alleles, resulting from natural regeneration with restricted gene flow. SGS estimates from subsamples (simulating collection and analysis with amplified fragment length polymorphism (AFLP) and microsatellite markers) were correlated with the ‘real’ estimate (from the full model population). For both marker types, sampling ranges were evident, with lower limits below which estimation was poorly correlated and upper limits above which sampling became inefficient. Lower limits (correlation of 0.9) were 100 individuals, 10 loci for microsatellites and 150 individuals, 100 loci for AFLPs. Upper limits were 200 individuals, five loci for microsatellites and 200 individuals, 100 loci for AFLPs. The limits indicated by simulation were compared with data sets from real species. Instances where sampling effort had been either insufficient or inefficient were identified. The model results should form practical boundaries for studies aiming to detect SGS. However, greater sample sizes will be required in cases where SGS is weaker than for our simulated population, for example, in species with effective pollen/seed dispersal mechanisms.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1038/sj.hdy.6800709
Programmes: CEH Programmes pre-2009 publications > Biodiversity
UKCEH and CEH Sections/Science Areas: _ Biosystems Management
ISSN: 0018-067X
Additional Keywords: spatial genetic structure; trees; sampling; spatial autocorrelation; dominant; codominant
NORA Subject Terms: Ecology and Environment
Date made live: 06 Jan 2010 16:20 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/7718

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...