Pseudononstationarity in the scaling exponents of finite-interval time series

Kiyani, K.H.; Chapman, S.C.; Watkins, N.W.. 2009 Pseudononstationarity in the scaling exponents of finite-interval time series. Physical Review E, 79, 036109. 11, pp.

Before downloading, please read NORA policies.

Download (2MB)


The accurate estimation of scaling exponents is central in the observational study of scale-invariant phenomena. Natural systems unavoidably provide observations over restricted intervals; consequently, a stationary stochastic process time series can yield anomalous time variation in the scaling exponents, suggestive of nonstationarity. The variance in the estimates of scaling exponents computed from an interval of N observations is known for finite variance processes to vary as 1/N as N→ infinity for certain statistical estimators; however, the convergence to this behavior will depend on the details of the process, and may be slow.We study the variation in the scaling of second-order moments of the time-series increments with N for a variety of synthetic and “real world” time series, and we find that in particular for heavy tailed processes, for realizable N, one is far from this 1/N limiting behavior. We propose a semiempirical estimate for the minimum N needed to make a meaningful estimate of the scaling exponents for model stochastic processes and compare these with some “real world” time series.

Item Type: Publication - Article
Digital Object Identifier (DOI):
Programmes: BAS Programmes > Global Science in the Antarctic Context (2005-2009) > Natural Complexity Programme
NORA Subject Terms: Physics
Space Sciences
Related URLs:
Date made live: 04 Aug 2009 15:28 +0 (UTC)

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...