Pseudo-nonstationarity in the scaling exponents of finite interval time series
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The accurate estimation of scaling exponents is central in the observational study of scale-invariant
phenomena. Natural systems unavoidably provide observations over restricted intervals; conse-
quently a stationary stochastic process (time series) can yield anomalous time variation in the
scaling exponents, suggestive of non-stationarity. The variance in the estimates of scaling exponents
computed from an interval of N observations is known for finite variance processes to vary as ~ 1/N
as N — oo for certain statistical estimators; however, the convergence to this behaviour will depend
on the details of the process, and may be slow. We study the variation in the scaling of second
order moments of the time series increments with N, for a variety of synthetic and ‘real world’ time
series; and find that in particular for heavy tailed processes, for realizable N, one is far from this
~ 1/N limiting behaviour. We propose a semi-empirical estimate for the minimum N needed to
make a meaningful estimate of the scaling exponents for model stochastic processes and compare

these with some ‘real world’ time series.

PACS numbers: 05.45.Tp, 89.75.Da

I. INTRODUCTION

Testing for, and quantifying scaling is central to the
application of statistical theories to ‘real-world’ extended
systems. A broad range of theoretical frameworks such as
turbulence [1], critical phenomena [2] and complex sys-
tems [3] frame their predictions in terms of the statistical
properties of (arbitrarily large) ensembles as a function
of scale. Under the assumption of ergodicity the statis-
tical scaling property of an extended system is captured
to some extent by a reduced (embedded) set of observa-
tions or measurements; so that a 1-D cut through a N
dimensional system will be sufficient to indicate whether
scaling is present, and in a quantitative way can usefully
restrict the scaling exponents of the system as a whole.
This approach is pragmatic — in physical systems it is
generally not practicable to capture and analyze the full
spatiotemporal information of all points in the system on
all scales. A key observable is then the quantitative scal-
ing properties of such a one dimensional sample or time
series. An example of this is the use of the Taylor hy-
pothesis in turbulence, where the time series at a single
point is used as a proxy for the statistical properties of
the flow [4].

Time series are also often parsed into sub-intervals to
isolate processes of interest, or to remove features which
might contaminate the calculation of the quantity of in-
terest. Examples of this in the study of solar wind tur-
bulence are the separating of fast and slow wind, and
open/closed field line regions [5, 6]; isolating or removing
signals of interplanetary shocks, magnetosheath cross-
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ings, and coronal mass ejection remnants [7, 8|; or where
the interval is restricted by a secular change in parame-
ters as the spacecraft changes location [9, 10]. Examples
in the study of the earth’s geomagnetic field include iso-
lating ‘quasi-stationary’ and ‘quiet’ intervals in magnetic
field data [6, 11]; and the effects of finite sample size in
the power spectral exponent estimates in the ionosphere
by ground-based measurements [12]. ‘Locally station-
ary processes’ are also discussed in speech signal analysis
[13] and physiological non-stationary signals [14]; and of
course statistical forecasting, whether in the context of
seasonal weather or the financial markets [15], is based
on time series histories which rely on the stationarity as-
sumption. In all of these cases, it is intuitively apparent
that smaller data intervals will result in poorer statistics,
which will be manifest in the variance of the observed val-
ues of the exponents. The observation of a (non-secular)
variation in the scaling exponents therefore has two in-
terpretations; either it is due to intrinsic fluctuations as
a result of the finite IV interval, or it is a consequence of
non-time stationarity of the time series z(t) i.e. different
scaling behaviour due to different physical phenomena.
If the properties of the underlying process are not known
a priort we need a method to distinguish these two in-
terpretations in a quantitative manner; or at best to put
a degree of confidence that it is due to one and not the
other.

The most commonly used tool to both establish and
quantify scaling in a time series z(t) is to test for scal-
ing of the power spectral density F(w) ~ w™?, and ob-
tain the exponent §. In a physical system, such scal-
ing can only be observed over a finite range, limited by
the interval (in time ¢) of N observations over which the
system is measured. From large-sample theory (asymp-
totic limit of N — o0) the variance in the power spec-



tral exponent 8 computed using least squares regression
from an interval of N samples is known [16, 17] for fi-
nite variance processes to vary as ~ 1/N as N — oo.
One method to obtain more complete information about
the scaling properties of a stochastic process z(t) is cap-
tured by how the statistical properties of the increments
y(t,7) = x(t+7)—2x(t) vary with the differencing scale 7;
the differencing being a particular type of coarse-graining
operation which has been chosen due to the easy analogy
with random walks, return probabilities etc. However,
there exist other coarse-graining operations which al-
though more involved, possess additional highly desirable
properties when studying scaling. In particular, wavelets
which (with some wavelet functions) when combined with
their detrending capabilities have been shown to be a
natural and computationally efficient way of studying
scale-by-scale statistical behaviour [13, 18, 19]. In this
paper we will discuss the behaviour of the scaling prop-
erties of the second order moment (y(t,7)?) ~ 7¢2). We
may anticipate that the statistical properties of this scal-
ing exponent ((2) follow that of 3; indeed there exist
many results for a range of different estimators of the
¢(2) [20, 21] that directly show the asymptotic ~ 1/N
behaviour discussed above. In practice, the convergence
to this ~ 1/N behaviour will depend on the details of the
process and the estimator and, as we shall show in this
paper, is often slow.

An essential tool in the analysis of ‘real world’ time se-
ries in the context of scaling is then a prescription for the
variance in the scaling exponents of z(t) as a function of
the number of observations N in the chosen interval. In
this paper we make some first steps in this direction by
obtaining empirical estimates from the study of a vari-
ety of stochastic processes that have been used as models
for physical systems. We focus on finite size N realiza-
tions of self-affine cases with Gaussian distributed incre-
ments in the form of a standard Brownian motion and
fractional Brownian motion (fBm); and those with heavy
tails, namely a-stable Lévy motion and linear fractional
stable motion (LFSM) [22-24]. A representative case
for multifractal scaling is provided by the p-model, often
used to characterize observations of turbulence [25, 26].

The fundamental property of ergodicity in systems
that exhibit scaling implies time stationarity. In its
strong sense time stationarity implies that the proba-
bility density function (PDF) of z(t) does not change
with time; this is known as strict stationarity. Pragmat-
ically, weak stationarity, that is time independence of
the variance or second order moment is usually adopted
— the latter convenience is usually assumed due to the
special place that the Central Limit Theorem and the
Gaussian distribution hold in statistics. In this paper we
are concerned specifically with the behaviour of scaling
exponents which are characterized through the statisti-
cal properties of the increments y(t, 7), rather than the
time series x(t); hence we will use as our test time se-
ries examples that have stationarity in y(¢,7), and not in

x(t).

We will focus on the statistics of the scaling exponent
of the second order moment of the increments, as this
also captures the power spectral exponent 3, and for self-
affine finite-variance processes the Hurst exponent H (see
next section and also [27] for the infinite variance case).
We will study these processes for a range of values of N
that are feasable for realisable physical systems; and find
that in particularly for the heavy-tailed processes, the
variance in the exponent with IV shows a significant de-
parture from the 1/N asymptotic behaviour. Neverthe-
less, for these heavy-tailed processes, we find empirical
evidence of an intermediate range of scaling with N~7.
We will estimate the time series interval N required to
capture the scaling exponent to reasonable precision; this
places a lower limit on the sample size. A related study
to this was conducted to investigate and compare the
effects of finite sample size on different statistical esti-
mators for the Hurst exponent H for a Gaussian white
noise process [28]. Stationarity also implies a particu-
lar PDF of the values of the exponent obtained from
many, length N, realisations of a given process. This is
known asymptotically for N — oo for the processes based
on Gaussian increments (generalizable to finite variance
processes) and is also known in this asymptotic sense
for infinite variance processes; both processes approach-
ing a Gaussian distribution for the scaling exponents as
N — oo [16, 17, 20, 24, 29, 30] (using least squares and
maximum likelihood estimation schemes). For the inter-
mediate stage of finite N we find intermediate distribu-
tions for the exponents; resembling both the asymptotic
Gaussian forms and, for heavy-tailed data, Gumbel max-
stable (Extreme value type 1) distributions. Comparing
these results with that found for real-world time series
may provide an additional test for stationarity in the in-
crements. In this spirit we finally illustrate these ideas
with some examples of real-world time series in the form
of in-situ observations of magnetic field and velocity in
the turbulent solar wind using data from spacecraft at
1AU in the ecliptic; and comment on the statistical prop-
erties of their scaling exponents in light of the represen-
tative synthetic toy models.

II. METHODOLOGY

We will focus attention on the scaling exponent ¢(2) of
the second order moment of the increments also known
as the second order structure function:

(y(t,7)%) = <(:v(t +7) - :c(t))2> = (y(t,1)2) 7@ | (1)

where we have assumed that the increment process is at
least second order stationary i.e. (y(t,7)?) = (y(1)?)
(weak-stationarity). In particular, this implies that the
power spectral density of a discrete time random walk
x(t) of i.i.d. stationary increments with finite variance,
scales as [13]

F(w) ~ w- €@+ (2)



where the scaling exponent ((2) is related to the power
spectral exponent 3 of z(t) by ((2) = 8—1. For self-affine
process with Hurst exponent H the PDF P(y,7) of the
increments obeys the scaling relation (for the case of a-
stable processes with finite N see [27], and the discussion
to follow)

P(y,m) =7"HP(r7y) 3)

where the PDF P at any scale 7 can be collapsed onto
a unique scaling function P*. The scaling relation (3)
implies that the scaling of the structure functions to all
orders p [27] is given by (y(7)P) = (y(1)?) 7¢®) where
((p) = Hp; and thus we have that ((2) = 2H. Our
results concerning the statistical behaviour of {(2) with
N will thus also apply to the power spectral exponent
0 for all the models concerned and the Hurst exponent
H for the self-affine models; both are commonly used
to characterize statistical scaling. Our remarks can also
be generalized to the scaling exponents ((p) of structure
functions of higher-order positive moments. These are
relevant for multifractal processes where the ((p) are a
nonlinear function of p and so H or 3 are not sufficient to
determine the complete statistical scaling of the y(¢, 7).

Our study consists of partitioning a given time series
x(t) into L equal intervals of sample size N denoted by
x;(t) where i = 1...L. Each of these intervals are then
differenced on scale 7 to produce a time series of the
increments y;(t, 7) = x;(t+7) —x;(t) of the process x;(t).

We will look for scaling of the second order moment
(structure function)
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with 7 such that M?(r) = M?(1)7%?). Again, the in-
dex i indicates the i*" interval over which the exponents
are calculated and tracks any (real or statistical) time
variation in the value of (;(2). In an infinitely large in-
terval, N — oo, the limits of the integral yli — +00; here
however each " interval of the time series will impose
different finite extremal values yljE For the heavy-tailed
processes in particular, the statistics of the yzjE can be
anticipated to have a significant effect on the statistics of
the ¢;(2); this has been discussed for the case of a- sta-
ble Lévy processes in [27]. These Lévy processes, possess
heavy tails in the PDFs of their increments, with tails
that fall as P(y) ~ y~(1+®) power-laws. The a-stable
Lévy processes have divergent moments for p = 2 and
above; for a finite sized sample the moments exist but can
be dominated by the behaviour of rare outlying points in
the tails which introduce a pathological bias when es-
timating scaling exponents from the moments [27] (for
a wider discussion see [31]). We circumvent these diffi-
culties, at least for self-affine time series, by restricting
our analysis to the scaling of the second order moment
¢(2), and by using the iterative conditioning technique
[27]. This simple and robust technique for exponent es-
timation removes a small percentage of the extreme data

values which are poorly sampled statistically. In some
pathological cases such as the a-stable Lévy distributions
these rare extreme points are of the order of and some-
times larger than the whole sum [32]. Because they are
so large they tend to dominate the statistics and thus the
scaling of the higher order moments. This can be clearly
seen if we look at the discrete definition of the moments
of order p

1 N
ME() = 5 D), - (5)
j=1

The reasoning and full illustration of this iterative condi-
tioning method to heavy-tailed non-Gaussian distribu-
tions is discussed in [27]. Although not discussed in
this paper, the iterative conditioning technique is also
an unbiased robust technique for distinguishing self-affine
(monofractal) from multifractal behaviour.

We will focus here on parameter stationarity as op-
posed to trend stationarity. The former refers to the
change in the intrinsic dynamics of the process of interest
as characterized by its quantitative statistical properties
(the behaviour of the moments); as opposed to the latter
which is simply an additive trend to the signal. In partic-
ular we will focus on the stationarity of the scaling of the
moments as captured by the exponents ¢;(p). If secular
trends are present in the time series then the time series
of increments will be approximately trend-free provided
our differencing scale 7 is sufficiently small [33]. A sec-
ular trend can also be removed by detrending or by the
method of studying the scaling of moments of wavelet
coeflicients where an appropriate wavelet is chosen with
a large number of zero-moments [19, 34]. The more com-
plex case of mixed dynamics i.e. two or more intrinsically
different processes represented in different sections of a
time series will not be considered here.

A. Data generation and sources

We will consider synthetically generated signals that
are both stationary and nonstationary with respect to
their increments. The signals with stationary indepen-
dent increments will consist of a standard Brownian mo-
tion and standard symmetric a-stable Lévy motion for
four values of the exponent « [22, 35]; the latter being
highly non-Gaussian and heavy-tailed with very large ex-
cursions in their time series. To survey a broad range
of such processes we have also included non-Markovian
versions of the above processes. These include a long-
memory fractional Brownian motion (fBm), and a long-
memory persistent and anti-persistent linear fractional
stable motion (LFSM) — see [17, 22-24] for more details
on these processes and in particular [24] for the algorithm
and MATLAB code for the LFSM.

We also investigate a multifractal time series generated
from a discrete multiplicative cascade process in the form
of the p-model [25, 26]. The p-model is used as a model



for intermittent turbulence [1, 36]. The intermittency
of the p-model time series leads to non-time stationary
finite N moments; however the set of scaling exponents
Ci(p) are stationary.

The nonstationary time series we will consider are a
standard Brownian motion with linearly varying stan-
dard deviation of its increments with time o ~ ¢, and
cyclically varying standard deviation (cyclically station-
ary) o ~ sin?(t). All of the above synthetic time series
were generated in MATLAB with appropriate random
seeding and sample sizes of N ~ 106.

Lastly, we will consider three real-world time series
which have been found to exhibit scaling [37-40]. These
consist of two time series of 100 second resolution mag-
netic field B, and speed v from the NASA WIND space-
craft at 1AU in the solar minimum year 1996; and a 64
second resolution one year long time series of the mag-
netic field energy density B2 from the NASA ACE space-
craft in the solar maximum year 2000. All of these time
series consist of N ~ 5 x 10° data samples and can be
downloaded from CDA web http://cdaweb.gsfc.nasa.
gov/.

III. RESULTS

We study the variation of the scaling exponent of the
second order moment (;(2) with sample size N. The
process by which the exponent (;(2) is estimated for L
contiguous intervals of N points of a time series is illus-
trated in Figure 1 for the p-model. We begin with the
time series in Figure 1(a) which we parse into L inter-
vals. For each of these intervals we obtain an estimate of
¢i(2) as the gradient of a linear least squares regression
to a log-log plot of the second-order moment M?(7) ver-
sus the scale or differencing parameter 7. This method
of obtaining the scaling exponents is also known as the
structure function technique [1, 5] and is closely related
to variance plot, correlogram and log-periodogram tech-
niques [17, 30] — in the latter reference [30] it is identical
to the variogram technique. We focus on this particu-
lar method to estimate (;(2) as it provides a point of
contact with asymptotic N — oo estimates of the vari-
ance of the power spectral exponent 3 which are based
on linear regression over a finite range power law power
spectrum [16, 17]. In both cases, the variance in the
estimated exponent will depend upon the details of the
linear regression. For the second order moment these de-
tails include the range of values of T over which M?(7)
is a power law; the number of different 7 for which we
calculate M?(7) and use in the linear regression; and the
uncertainty of each M?(7) value. In all cases considered
here we optimize these details to minimize the linear re-
gression error but importantly use the same algorithm
for all of the sample time series that we discuss.

The linear fit is obtained by linear least-squares regres-
sion which also provides an estimate of the error. We
augment this estimate of the error by varying the start

and end points of the regression by a few points and ob-
taining the difference in the exponents. The linear regres-
sion was done over ~ 20 values of the scale parameter 7,
where 7 was increased geometrically as 7 = base”, where
k € {0,---,40} and base was chosen to be 1.2. The fit
was done over this reduced set of measurements at ~ 20
values of 7 so that a fair comparison can be made with
the real-world data (to be discussed later) where only a
limited power-law range is seen.

Due to its highly intermittent nature the p = 0.6 p-
model is not time stationary in its finite N moments and
this can be seen in Figure 1(b) where we plot consecutive
values of the second order moment MZ?(7) obtained for
each of the L intervals of N points, shown for 7 = 1 and
two values of N. For the p-model time series shown here,
the second order moment follows the local amplitude of
fluctuations in the time series itself; comparing the ratio
of the amplitude of these fluctuations to the signal am-
plitude is one of the classical ‘first base’ techniques for
establishing whether the signal is stationary (in the weak
sense)[33]. As one would expect from (5), this variation
of the second-order moment M?(7) with the amplitude
of the time series is emphasized as we decrease N as any
estimates of the statistics from smaller sample size will
naturally mimic the more local features of the time series.
This behaviour is more pronounced in very intermittent
signals i.e. those with heavy-tailed fluctuation PDFs.

We also plot in Figures 1(c) and (d) the correspond-
ing estimates of (;(2) for each interval. These two panels
show the same data, that is, the estimates of (;(2) plot-
ted without (¢) and with (d) error bars obtained from
the linear regression and the error augmentation outlined
above. As intuitively expected, if we decrease the sample
size N over which the (;(2) are computed, the scatter
increases. However unlike the moments, there is no clear
trend with the amplitude of the signal, indicating sta-
tionarity of the scaling exponent (;(2). This latter phe-
nomenon will also be encountered in the non-stationary
Brownian time series we will study. The estimates of
¢i(2) can be seen to vary by up to a factor of two for
N = 10* for this realization of the p-model. This under-
lies the difficulty of obtaining physically meaningful es-
timates of scaling exponents for physically realizable N.
We can see that the error bars approximately capture the
fluctuations in the estimates of (;(2) for the case of the
p-model. As we wish to include strongly non-Gaussian
processes in our study, we will henceforth present numer-
ical estimates of the variance of (;(2) obtained directly
from computing many values of (;(2) rather than the lin-
ear regression error.

The essential point is that quite significant variation
in the scaling exponents can arise in time stationary, but
intermittent, time series; even when these are estimated
over intervals of data that might intuitively be considered
to be of adequate length. In order to distinguish variation
in the scaling exponents that is statistical (finite N effect)
as shown above, from that which reflects intrinsic non-
time stationarity, some estimate of the N dependence
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Figure 1: (Color online) a.) Time series of length N = 10°
for the p-model (p = 0.6). b.) Variation of the second order
moment of the increments y;(t, 7) for time-scale 7 = 1 of the
above time series where the original time series has been par-
titioned into L = 100 and L = 10 equal sized intervals. c.)
Variation of conditioned (;(2) with time for the p-model with
the same segmentation as in b.) — also shown are the mean
values of the exponents for different partitioning correspond-
ing to different sample sizes; d.) Same as (c.) but with errors
explicitly shown.
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Figure 2: (Color online) a.) The variance of conditioned ((2)
with sample size N for all the synthetic finite variance pro-
cesses studied shown on a log-log plot. b.) same as in a.)
for all the synthetic infinite variance processes studied. The
diagonal dashed line on both these plots indicates a negative
slope of unit gradient so that comparison with theoretically
expected asymptotic behaviour can be made. The vertical
black dashed lines indicate the areas outside of which errors
begin to dominate due to i.) (bottom vertical line) lack of
values of (;(2) to make a decent estimate of Var(¢(2)); and
ii.) (top vertical line) failure of the iterative conditioning
technique to obtain unbiased estimates of {(2).

of the variance of {(2) is needed; this will also point to
an estimate of the minimum number of observations N
needed to obtain a ‘reasonably accurate’ estimate of ((2).
We will now explore the variance of ((2) as a function of
N.

In the limit N — oo, 3, when estimated via a log-
periodogram varies as Var[3] ~ 1/N [16, 17]. This lim-
iting behaviour is also known for some other estimation
schemes of the self-similarity parameter [20] (as we dis-
cuss later here). Thus we would anticipate that for suffi-
ciently large N, Var[(;(2)] ~ 1/N for our moment scaling
estimation also. However, we do not know the rate of con-
vergence with NV to this limiting behaviour and can also



anticipate that this will depend upon whether the PDF
of the increments is heavy-tailed, and whether or not the
increments are dependent — both of which introduce fur-
ther difficulties in obtaining an unbiased estimator.

In Figure 2 we plot the variance of (;(2) against the
sample size N on log-log axes, for a range of NV that are
feasable in realistic realizations of physical systems. Fig-
ure 2(a) shows the behaviour of a subset of our synthetic
time series that are intrinsically finite variance processes;
Figure 2(b) shows all the synthetic time series from infi-
nite variance processes that we consider. Plotting these
on log-log axes reveals a characteristic power law trend
for all the processes:

Var[¢(2)] =CN™7. (6)

We see that indeed, v ~ 1 for the intrinsically finite vari-
ance processes. More pragmatically, we can use this plot
to make an estimate of the minimum sample size Ny
needed in order to estimate ((2) such that the error in-
troduced from the small sample size N = N,,;, is, say,
~ 5%. We propose a simple criterion

VarC)]
(@ 00 0

where ((2)|r=1 is the value of {(2) estimated for the en-
tire time series (assuming that the scaling is stationary).
This leads to

Var[¢(2)] £ (0.05¢(2)[z=1)” , (8)

where the value of N,,;, is extrapolated from the plot
of Var[¢(2)] Vs. N, from Figure 2(a). For these finite
variance processes expressions (7) and (8) yield Npip ~
103 for the fBm model; N, ~ 10* for the standard
Brownian motion (stationary and non-stationary); and
Nypin ~ 10° for the the p-model.

One can invert these relationships to obtain the ap-
proximate error on (;(2) given a sample size N from
which it was calculated. The constant C' in (6) is also
intrinsic to our estimate of N,,;,; operationally the pro-
cedure for obtaining the error on ¢;(2) in this manner
would also include estimating C' from the plot in Figure
2(a).

Processes that show scaling often have increments
drawn from a heavy tailed PDF, these may also not
intrinsically have finite variance as is the case for the
a-stable Lévy processes. Figure 2(b) shows the N de-
pendence of all the infinite variance synthetic time series
that we have considered, including those with long-range
memory. The curves are all generated from time series
which possess heavy-tailed PDFs for their increments.
These include both the ordinary and fractional Lévy in-
crements. The curves in Figure 2(b) have a range of v
values close to but also clearly distinct from v = 1. As
will be discussed later this is due to slow convergence to
the asymptotic N~! behaviour; from Figure 2(b) we can
see that the Lévy process which is closest to Gaussian,

namely with o = 1.8, has behaviour closest toy ~ 1. In a
similar way to the method used above for the finite vari-
ance synthetic processes, we make empirical estimates of
Npin required to obtain an estimate of ((2) to within
~ 5% for the infinite variance processes. For the Lévy
processes a = 1.2 and a = 1.4, and LFSM (H = 0.44,
a = 1.4) Nyin ~ 10°; for the a = 1.6 case Nyin ~ 10%;
and for the o = 1.8 case and LFSM (H = 0.9, o = 1.6)
Nypin ~ 103, The relevant property in the context of es-
timating the uncertainty on (;(2) is that for realizable N,
these processes do not show an N~! dependence. Also,
unlike the Gaussian processes in Figure 2(a) which cluster
around a similar C' value, the infinite variance processes
have noticeably different values of C' which depends on
both the the tail exponent a and also on the degree of
memory in the process given by H — (1/a) [20].
Finally, combining equations (6) and (8) we obtain

Npin = CY7(0.05¢(2)| 1)~ 27, (9)

where both C' and v depend on the process in question;
and for finite variance processes v = 1.

Error analysis

To estimate the errors in the estimates of Var({(2))
a small monte-carlo type study was performed in which
different random seeds were used to generate 10 different
realisations of the two archetypal processes studied here
i.e. finite and infinite variance processes in the form of
10 different realisations of a standard Brownian motion
and a standard a-stable Lévy process (« = 1.4). The
computation of the logVar({(2)) Vs. log N plots were
then calculated for each of these realisations; these are
shown in Figures 3(a) and (b). We then average over
these realisations to obtain an average value of Var({(2))
for each N, shown on log-log axes in Figures 3(c) and (d);
the ensemble of realisations also provides an error on this
value via the maximum deviation from this average.

At large N errors are dominated by there being fewer
values of computed (;(2) and at small N, by poor res-
olution of the PDF from which we ultimately compute
¢i(2). In particular, at small N we can see from the plots
for the a-stable processes that there is a systematic de-
viation from power law behaviour in N. This arises from
a breakdown in the iterative conditioning technique [27]
at small N.

In the next section we will discuss the PDFs of the
scaling exponents (;(2) obtained from this study. When
these are close to Gaussian, standard Chi-squared distri-
butions and F-test techniques could provide methods of
obtaining errors for values of Var[((2)], even from a sin-
gle realisation. In this context we should mention the use
of bootstrap re-sampling methods for providing distribu-
tions, confidence intervals and statistical significance for
parameter estimates in situations when one is limited by
a single realisation [41, 42]. Although the convergence



a) -15

Iog10 Var(@c(2))

4
IogmN

45 5 55

s

-2

Iog10 Var((2))

-4

Iog10 Var((2))
&
[$)]

—(Mean) Standard Brownian
---linear fit (y =-1.06 x + 1.39)

Iogm Var((2))

——linear fit (y =-1.4x +4.35)
—(Mean) Levy a=1.4

3 3.5 4 4.5 5 55
Iog10 N

3 3.5 4 4.5 5 5.5 6
Iog10 N

Figure 3: (Color online) Plots showing how errors can be ascribed to the plots in Figure 2. The top plots show the results of
the study for 10 different randomly seeded realisations of sample size N = 10° for a.) a standard Brownian motion and b.) an
a-stable Lévy motion (a=1.4). Plots c¢.) and d.) are the mean averages of the realisations in a.) and b.) respectively, where
the error bars are calculated from the maximum deviation from this mean in the 10 realisations.

and consistent properties of such techniques in the case of
heavy-tailed distributions [43—45] and especially infinite-
variance processes are still unclear we envisage the use of
such methods in future research.

Finally, one could in principle increase the available
number of values of (;(2) by overlapping intervals of size
N within a given single realisation. We have, however,
found that this introduces a significant systematic bias
in the computed values of Var[¢(2)].

Real-world data

We calculate Var[((2)] values for the examples of real-
world data sets discussed earlier in the introduction. The
plot detailing this study is shown in Figure 4. For com-
parison we have also included on this plot the variation
of Var[((2)] with N for the two archetypal cases of finite
and infinite variance processes in the form of a standard
Brownian motion and an a-stable Lévy process (o = 1.4);
we also plot a negative unit slope for the asymptotic
N — oo behaviour obtained from large sample theory,
this is indicated by the dashed line. Figure 4 shows that
the real-world data can show significant departures from
the synthetic data.

The WIND data illustrates the effect of large data gaps
which are not present in the ACE data shown; this lim-
its the amount of data available for certain N which is

reflected in the corresponding estimations of Var[((2)].
For the ACE B? data we can see a clear systematic de-
parture from the synthetic models. We will discuss this
latter data set in the next section below.

The problem with a single length IV realisation is that
we cannot calculate the errors on Var[((2)] as done in
the previous section; and thus have no way of gauging
how close these graphs are to the expected asymptotic
behaviour predicted by large-sample theory. However,
one can still estimate an error for measurements of ((2)
obtained from a finite data size N, in the same way as
was done in equations (7)-(9). For example, in the case
of the ACE B? data this would indicate that a N ~ 10°
sample size would introduce an error of ~ 12% in the
estimated values of ((2) using the iteratively conditioned
moment scaling technique.

A. TUnderlying statistics of ((2)

We plot in Figure 5 the PDFs H ({(2)) for three of
the representative models we have studied along with the
PDFs H (¢(2)) for one of the real-world data sets. For
each of these time series, PDFs have been constructed
for two different sample sizes N. We see that apart from
the a-stable case, these PDFs are well described by a
Gaussian distribution, as can be seen by the Maximum
Likelihood fits. The a-stable Lévy case is shown in Fig-
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Figure 4: (Color online) Plot of the variance of conditioned
¢(2) with sample size N for all the real-world data sets studied
shown on a log-log plot. The dashed line on both of these plots
indicates a negative slope of unit gradient. Also included for
comparison are the archetypal synthetic data sets for the finite
variance and infinite variance processes.

ures 5b i.) and b ii.) to be well described by a Gum-
bel max-stable Extreme Value distribution [46]. To see
why nearly all of our PDFs corresponding to finite vari-
ance processes are close to Gaussian we appeal to large
sample-theory.

To facilitate understanding we employ more heuristic
arguments at the expense of mathematical rigour. Inter-
ested readers can find more on the mathematical details
and proofs in [16, 47] which deal with spectral param-
eter estimates of strong long-range dependent Gaussian
stationary time series; [29] for a non-stationary general-
ization of these; [21] for a pseudo-variogram estimator
(similar to the method in this paper) to long-range de-
pendent Gaussian processes with stationary increments;
and the more recent and extensive paper by Stoev, Pipi-
ras and Taqqu [20] which extends the proofs and argu-
ments of [21] to infinite variance processes in the form of
a-stable and linear fractional stable processes. This lat-
ter reference will be our main source and point of contact
for what follows. A survey of many of these papers and
parameter estimation techniques can be found in [17].

As mentioned above, we have chosen Stoev et. al. [20]
as a point of contact from amongst the extensive liter-
ature concerning asymptotic large sample behaviour of
parameter estimates. This is primarily because this work
has dealt with infinite variance processes of the type dis-
cussed here; also our moment scaling technique is a par-
ticular form of one of the main estimators used in [20]
(see also [21]). We have also used Stoev’s MATLAB
algorithm for generating the LFSM realisations used in
this paper. Similar to our study Stoev et. al. use a
least squares regression on the moments which they refer
to as the ‘power’ estimator. However, instead of tak-
ing moments of the increments as we do, they take the
moments of coefficients for a Finite Impulse Response

Transformation (FIRT) of the discrete time-series, which
is characterised by a discrete filter of n members. Our
increments are one of the simplest forms of these FIRT
coefficients if we take the filter to be comprised of a set
of n = 2 members {—1,1}. However, any extra benefits
of having more than one zero-moment (moments which
are equal to zero) will be lost due to this simplicity. This
also applies to the wavelet coefficients used in the study
of Stoev et. al. where our increments result from tak-
ing the mother wavelet to be the superposition of two
delta functions (one positive, one negative) separated by
a scale 7 — also known in the literature as the ‘poor man’s
wavelet’ [48]. Also, an important fact to note when com-
paring the methods of Stoev et. al. to ours is that we
differ with the ‘power’ method of these authors by using
the iterative conditioning technique which by censoring
and excluding the poorly sampled large extreme events,
correct for the bias which is pathological in the case of
heavy-tailed distributions [27].

Recall that the second order moment is scaling as
M2(1) = M?(1)7¢® and we will be estimating ¢(2) from
the gradient of a log-log plot

log MZ(7) = ¢(2) log T + log M?(1) . (10)

For the discrete data the gradient can be estimated via
least squares linear regression, and the problem can be
set out as

Ml20g = Tlogz + (11)

1
— e,
vN
where
log M?(71)

M2

log — ’ (12)

log M 2(1k)
is the vector of the observations (or dependent variables);
logm 1
Tiog = : : ) (13)
logm, 1

contains the vector of the scales (or independent vari-
ables);

2= (g ) -

is the vector of the parameters needed to be estimated;
and

VN (log M2(r) ~ log NI(m) )
€= : ) (15)

VN (log M2 (ri) — log M2(m) )

is the vector of estimation errors between the sample
measurements and those of the true expected values (de-
noted by M) for which the scaling relation in (10) actu-
ally holds. The solution to equation (11) is then given by
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Figure 5: (Color online) PDF’s H({(2)) obtained for (a) a standard Brownian motion, (b) a-stable Lévy process (o = 1.4), (c)
p-model (p=0.6) and (d) ACE 2000 B? for two different sample sizes (i) N = 1000 (N = 500 for ACE) and (ii) N = 10,000
(N = 5000 for ACE). The sample PDF’s are overlaid with Maximum Likelihood Estimate (MLE) model fits of a Normal
distribution for a, ¢ and d; and Gumbel max-stable (extreme value type I) fits for b. For both these models u is the location
parameter and o is the scale parameter, which for the Normal distribution coincide with the mean and standard deviation.
The samples of (;(2) (varying with time ¢) from which these PDFs are constructed, are shown in the corresponding inserts of
each plot.



the well known ordinary linear least squares estimator to
the parameters as
-1

Z = ( ltogTIOg) Tltong20g ) (16)
where superscript ¢ represents a matrix transpose. (16)
is simply a linear combination of the dependent variable
log MZ(7) i.e. a sum, so that for (;(2) one can write the
ordinary least squares estimate as

k

G(2) = a; (log M7 (y)) (17)

j=1

where the a; are all the elements of the appropriate vector

from (Tfongog) Tfog. We will return to this form of

the ordinary least squares solution shortly.

Adapted to the notation used in this paper, Theo-
rem 3.1 in [20] states that if {(2) is the FIRT coefficient
estimator (using least squares regression) for the scal-
ing exponent and CA (2) the true expected value; then as
lim N — oo

VI (¢2) ~L(2) = N (0,0%) (18)

where N (0,02) is a Normal distribution with mean 0
and variance o2. Strictly speaking this theorem requires
that the FIRT coefficients obey the following inequality
between the number of zero-moments of the FIRT filter,
the self-similarity parameter H and the tail (stability)
index «

Q>H+a (19)

1
(a=1)"
which in the case of the ordinary Brownian motion and
the a-stable Lévy processes, where H = 1/«, generalises
to

1

Q> R (20)
The moment scaling scheme based on the raw increments
has only one zero moment, hence @) = 1; and as a result,
except for the p-model for which o and H are unknown
(or not applicable), the above inequality does not hold
for any of the synthetic models. However as mentioned
in [21] for Gaussian processes, where in equation (19)
o = 2, the Q = 1 case is sufficient for the above theo-
rem to hold as long as H < 0.75. For our fBm model
H = 0.8 and we find that the results of the theorem (18)
still hold. Thus we can conjecture that the criterion in
(19) and (20) can be relaxed a little so that the inequality
becomes an approximate inequality. Also, Stoev et. al.
[20] show via simulations that the estimators continue to
work well even when the criterion in (19) and (20) are
not satisfied. The essential reason why this criteria was
initially introduced, was so that the estimator could dis-
tinguish between actual long-memory effects and trends
[21].
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We now consider the exception that we have found to
this behaviour — that of the infinite variance processes at
finite N. We would expect that in the N — oo limit the
results of the above theorem will also hold for the infinite
variance processes. However, we believe that in this case
the convergence will be slow and will depend upon the
number of scales 7 that were used to conduct our linear
least squares regression.

We will now go beyond the above asymptotic argu-
ments to discuss the non-Gaussian intermediate finite N
behaviour that we see here in Figure 5 (b-i) and (b-ii).
Recall the expression for MZ(7) given in equation (5)
(for p = 2). We will discuss in detail here the case where
the sum in (5) consists of i.i.d. random variables; this
is the case for some of our synthetic time series — these
arguments can be developed for other cases. The PDF
of this sum will by the Central Limit Theorem tend to a
Gaussian and for finite N will probably take the form of
a Pearson x2 type variable with v degrees of freedom (see
[21] for more details). However, for an infinite variance
process, the sum in (5) will be dominated by the largest
extreme events, which in some cases can be of the order
of the rest of the sum [32]. This will still be the case even
when we have excluded some of these extreme events due
to the iterative conditioning scheme. Thus the sum will
be distributed as the extreme values of an a-stable Lévy
distribution — which is given by a max-stable Frechét dis-
tribution (see [27]). Note that this will be the case for
any N, even in the asymptotic large N case. Without
too much detail the form of the PDF P (M?) of M2 will
be of the type

) A A
7)o (o) -

where any scale parameters have been absorbed into
the A. One can then convert this Frechét PDF to a

PDF P (Mf)log corresponding to the dependent vari-

able log M?(7) in the least squares scheme in (17), which
under a simple conservation of probability will be given
by

. A @ A Q@
P (Miz,log) = E €Xp <_§Mi2,log - a €Xp (_§Mi2,log)> )
(22)
which is in the form of a Gumbel extreme value distri-
bution; this is another max-stable distribution [49]. The
Gumbel max-stable PDF has a long slow exponentially
decreasing right tail; this will imply that a sum of ran-
dom variables such as (17), each distributed with this
PDF, will eventually tend to a Gaussian distributed ran-
dom variable, but slowly due to the heavy right tail. This
then captures our result in Figures 5 (b-i) and (b-ii), and
may also explain why we do not obtain the ~ N~! be-
haviour in the plots of log Var(¢(2)) Vs. log N for the
a-stable Lévy cases.
As discussed above, for the case of the finite variance
synthetic time series the M? will be well described by a



Gaussian or (more realistically for finite N) a Pearson
X2 PDF. In the same way as was done with the infinite
variance processes above, it can be shown that the PDF
of log M? can be written as a Gumbel min-stable PDF.
Gumbel min-stable PDF’s have long slow exponentially
decreasing left tails, which in our case will be limited by
the fact that ¢(2) > 0. The right tail of Gumbel min-
stable PDF's is more compact with a rapidly decaying
exponential tail. Due to the more compact nature of the
PDF, a sum of log M? variables will tend to a Gaussian
under the Central Limit Theorem much faster than the
infinite variance processes above, hence explaining why
the PDFs H (¢(2)) for the finite variance processes are
well described by a Gaussian.

Finally, there is the open question of the behaviour of
the real-world data. The ACE B? data PDFs of H (¢(2))
show that they can be well described by a Gaussian; how-
ever the scaling of Var(¢(2)) with N using our estimation
shows a significant deviation from the N ~! behaviour im-
plied by (18). This will be the topic of future work.

IV. CONCLUSIONS

We have investigated finite-sample size (V) effects on
quantifying the statistical scaling properties of time se-
ries. We focus on the scaling exponent ((2) of the vari-
ance or second moment which for a wide class of pro-
cesses also gives the spectral exponent 3 of the (power
law) power spectrum. If too small a sample size is used
then these fluctuations effectively introduce a pseudo-
nonstationarity in the estimates for the scaling expo-
nents. To achieve an error in the exponent of less than
~ 5%, we find that the number of data points N needed
varies significantly with the details of the underlying pro-
cess and is in the range of 103 — 10° for the synthetic
models used in this paper. The variance in the exponent
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when computed from an interval of NV samples is known
to vary as ~ 1/N for N — oo; however, the conver-
gence to this behaviour will also depend on the details
of the process and more importantly on the parameter
estimating technique used. In particular we have shown
that heavy tailed processes can be far from this limiting
behaviour for observationally realisable V.

We have also considered the case where the scaling
exponents are time independent, but where there is a
secular time dependence in other parameters such as the
standard deviation. For the case of a Brownian motion,
the estimate of the scaling exponent is not affected by
this time dependence. It may thus be too premature to
reject a time series for scaling analysis simply because
of the non-stationarity of certain parameters i.e. a run-
ning mean or standard deviation. This also highlights the
need to distinguish time variation in the moments from
that in scaling exponents that are derived from them.

We have focussed here on the moment order scaling
technique to calculate the scaling exponents in order to
highlight the issue of apparent non-time stationarity. Al-
though there exists extensive statistics literature on the
asymptotic N — oo limit of various estimation tech-
niques, further work is needed to investigate how these
details pass over to the more pressing and pragmatic need
for their implications on quantifying scaling in finite and
realisable N-sized samples.
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