Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Detection of the anti-androgenic effect of endocrine disrupting environmental contaminants using in vivo and in vitro assays in the three-spined stickleback

Jolly, Cecile; Katsiadaki, Ioanna; Morris, Steve; Le Belle, Nadine; Dufour, Sylvie; Mayer, Ian; Pottinger, Tom G.; Scott, Alexander P.. 2009 Detection of the anti-androgenic effect of endocrine disrupting environmental contaminants using in vivo and in vitro assays in the three-spined stickleback. Aquatic Toxicology, 92 (4). 228-239. 10.1016/j.aquatox.2009.02.006

Abstract
We have previously developed a novel in vitro assay that utilises cultures of primed female stickleback kidney cells for the screening of potential androgenic and anti-androgenic environmental contaminants. Stickleback kidney cells are natural targets for steroid hormones and are able to produce a protein, spiggin, in response to androgenic stimulation. We undertook a combined in vivo/in vitro study where we used the magnitude of spiggin production as an endpoint to test the anti-androgenic properties of the pharmaceutical androgen antagonist flutamide and three environmental contaminants: the organophosphate insecticide fenitrothion, the urea-based herbicide linuron and the fungicide vinclozolin. In vitro, kidney cells were exposed to a range of concentrations [from 10-14M (2.5pg/L) up to 10-6M (280μg/L)] of the test compounds alone for determining agonist activities, or together with 10-8M (3μg/L) dihydrotestosterone (DHT) for determining antagonist activities. An in vivo flow-trough aquarium-based study was carried out in parallel. Female sticklebacks were exposed to a range of concentrations of the same chemicals alone or in combination with DHT (5μg/L) for 21 days. All of the compounds significantly inhibited DHT-induced spiggin production in a concentration-dependent manner in both the in vitro (FN≥FL≥LN>VZ) and in vivo (FN>FL≥VZ>LN) assays. Fenitrothion and flutamide inhibited spiggin production in vitro at a concentration as low as 10-12M (P<0.05), while linuron and vinclozolin inhibited DHT-induced spiggin production at concentrations of 10-10M (P<0.05) and 10-6M (P<0.001) respectively. Similarly, fenitrothion and flutamide were the most potent chemicals in vivo and significantly reduced DHT-induced spiggin production at a concentration of 10μg/L and 25μg/L respectively (P<0.01). Both linuron and vinclozolin induced a significant decrease in DHT-induced spiggin production at a concentration of 100μg/L when tested in vivo. In addition, kidney cell primary culture was used to test the (anti-)androgenic effects of the major environmental contaminants: oestradiol (E2), nonylphenol (NP) and bisphenol A (BPA) for the first time in teleosts. We observed that these compounds were able to significantly inhibit spiggin production at high doses (E2: 270μg/L; NP: 2.2μg/L; BPA: 2.3μg/L). When tested in the absence of DHT, none of the compounds showed a significant agonistic activity in either in vivo or in vitro assays. Overall, our data further demonstrate that kidney cell primary culture is a reliable and a sensitive screening tool for the detection of (anti-)androgenic compounds. In addition, our study represents the first attempt to develop a combined in vivo/in vitro screening strategy for assessing the effects of (anti-)androgenic endocrine disrupters.
Documents
6684:3218
[thumbnail of Androgenic_effects_in_sticklebacks_-_In_press_-_Aquatic_Toxicology_2009.pdf]
Preview
Androgenic_effects_in_sticklebacks_-_In_press_-_Aquatic_Toxicology_2009.pdf

Download (865kB)
Information
Programmes:
UNSPECIFIED
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item