Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Review article: Weddell Sea Polynya formation, cessation and climatic impacts

Zhou, Lu ORCID: https://orcid.org/0000-0001-8520-937X; Ayres, Holly ORCID: https://orcid.org/0000-0003-0294-7620; Gülk, Birte ORCID: https://orcid.org/0000-0002-5765-9557; Narayanan, Aditya ORCID: https://orcid.org/0000-0002-8967-2211; de Lavergne, Casimir; Ödalen, Malin ORCID: https://orcid.org/0000-0003-4855-7767; Silvano, Alessandro ORCID: https://orcid.org/0000-0002-6441-1496; Wang, Xingchi; Lindeman, Margaret ORCID: https://orcid.org/0000-0003-1737-4861; Steiger, Nadine ORCID: https://orcid.org/0000-0002-7533-6583. 2026 Review article: Weddell Sea Polynya formation, cessation and climatic impacts. The Cryosphere, 20 (1). 285-308. 10.5194/tc-20-285-2026

Abstract
Open-ocean polynyas, areas with little or no sea ice, reappeared extensively in 2016 and 2017 over the Maud Rise in the Weddell Sea after a 40-year hiatus, raising a series of unresolved questions about the atmosphere-ice-ocean interactions in the Antarctic region. These major polynyas significantly influence moisture and heat exchange between the atmosphere and the ocean, impacting both regional and global climate dynamics, as well as ecosystem functioning and biogeochemical processes. Notably, they may play a crucial role in contributing to the formation of Antarctic Bottom Water and influencing global ocean circulation. In this Review, we synthesize current knowledge on the drivers and impacts of Weddell Sea polynyas. Recent occurrences have been linked to factors such as a strengthening Weddell Gyre, a negative Southern Annular Mode, extreme local atmospheric conditions (atmospheric rivers and cyclones), and subsurface ocean heat buildup which acts as a preconditioning factor. The associated deep ocean convection from these polynyas can enhance air-sea gas exchange and trigger earlier phytoplankton blooms due to the influx of iron and nutrients from the deep ocean. While advancements in observation and modeling techniques have significantly improved our understanding of polynyas, substantial uncertainties remain regarding their interaction with recent Antarctic sea ice loss, their sensitivity to ocean mixing schemes, their excessive size or frequency in climate simulations, and future projections. Therefore, future research should focus on developing comprehensive four-dimensional regional observatories and targeted, data-constrained coupled models that accurately capture atmosphere-ice-ocean interactions across various timescales.
Documents
540953:270864
[thumbnail of tc-20-285-2026.pdf]
Preview
tc-20-285-2026.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (8MB) | Preview
Information
Programmes:
NOC Mission Networks > Mission Network - Climate
Research Groups > Open Ocean Physics
NOC Research Groups 2025 > Open Ocean Physics
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item