Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Extremely poleward shift of Antarctic Circumpolar Current by eccentricity during the Last Interglacial

Abstract
The Antarctic Circumpolar Current (ACC) exerts substantial control on the physical, chemical, and biological properties of the Southern Ocean, playing a key role in modulating the global carbon cycle and climate. However, the orbital-scale forcing and future changes in the strength and position of the ACC remain elusive. Here, we reconstruct the history of ACC extending back to the Last Interglacial (LIG; 128-113 ka) using sediment cores from the Scotia Sea. Based on high-resolution measurements of sortable silt mean grain size, we find that bottom current speed is synchronized with eccentricity, superimposed by precession. During the LIG when both eccentricity and precession reached their maxima, current speed peaked in the region south of the Southern ACC front, suggesting that the Polar Front shifted ~5° southward. We propose that the low-frequency ACC frontal migration is primarily controlled by eccentricity-driven shifts in the Southern Hemisphere Westerlies, while precession-driven shifts contribute to high-frequency migration. Our findings imply under future orbital-scale scenarios, the ACC position is likely to shift north.
Documents
540367:267226
[thumbnail of OPen Access]
Preview
OPen Access
s41467-025-63933-x.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (1MB) | Preview
Information
Programmes:
BAS Programmes 2015 > Palaeo-Environments, Ice Sheets and Climate Change
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item