nerc.ac.uk

Assessing the spatial scale of synchrony in forest tree population dynamics

Chisholm, Ryan A.; Fung, Tak; Anderson-Teixeira, Kristina J.; Bourg, Norman A.; Brockelman, Warren Y.; Bunyavejchewin, Sarayudh; Chang-Yang, Chia-Hao; Chen, Yu-Yun; Chuyong, George B.; Condit, Richard; Dattaraja, Handanakere S.; Davies, Stuart J.; Ediriweera, Sisira; Ewango, Corneille E.N.; Fernando, Edwino S.; Gunatilleke, I.A.U. Nimal; Gunatilleke, C.V. Savitri; Hao, Zhanqing; Howe, Robert W.; Kenfack, David; Yao, Tze Leong; Makana, Jean-Remy; McMahon, Sean M.; Mi, Xiangcheng; Bt. Mohamad, Mohizah; Myers, Jonathan A.; Nathalang, Anuttara; Pérez, Álvaro J.; Phumsathan, Sangsan; Pongpattananurak, Nantachai; Ren, Haibao; Rodriguez, Lillian J.V.; Sukumar, Raman; Sun, I-Fang; Suresh, Hebbalalu S.; Thomas, Duncan W.; Thompson, Jill ORCID: https://orcid.org/0000-0002-4370-2593; Uriarte, Maria; Valencia, Renato; Wang, Xugao; Wolf, Amy T.; Zimmerman, Jess K.. 2024 Assessing the spatial scale of synchrony in forest tree population dynamics. Proceedings of the Royal Society B: Biological Sciences, 291 (2035), 20240486. 12, pp. 10.1098/rspb.2024.0486

Full text not available from this repository.

Abstract/Summary

Populations of forest trees exhibit large temporal fluctuations, but little is known about the synchrony of these fluctuations across space, including their sign, magnitude, causes and characteristic scales. These have important implications for metapopulation persistence and theoretical community ecology. Using data from permanent forest plots spanning local, regional and global spatial scales, we measured spatial synchrony in tree population growth rates over sub-decadal and decadal timescales and explored the relationship of synchrony to geographical distance. Synchrony was high at local scales of less than 1 km, with estimated Pearson correlations of approximately 0.6–0.8 between species’ population growth rates across pairs of quadrats. Synchrony decayed by approximately 17–44% with each order of magnitude increase in distance but was still detectably positive at distances of 100 km and beyond. Dispersal cannot explain observed large-scale synchrony because typical seed dispersal distances (<100 m) are far too short to couple the dynamics of distant forests on decadal timescales. We attribute the observed synchrony in forest dynamics primarily to the effect of spatially synchronous environmental drivers (the Moran effect), in particular climate, although pests, pathogens and anthropogenic drivers may play a role for some species.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1098/rspb.2024.0486
UKCEH and CEH Sections/Science Areas: Biodiversity (Science Area 2017-)
ISSN: 0962-8452
Additional Keywords: population dynamics, synchrony, forest trees, Moran effect
NORA Subject Terms: Ecology and Environment
Related URLs:
Date made live: 26 Nov 2024 14:40 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/538444

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...