Small topographical variations controlling trace maker community: Combining palaeo- and neoichnological data at the Porcupine Abyssal Plain
Miguez-Salas, Olmo; Rodríguez-Tovar, Francisco J.; Dorador, Javier; Bett, Brian ORCID: https://orcid.org/0000-0003-4977-9361; Charidemou, Miros S.J.; Durden, Jennifer ORCID: https://orcid.org/0000-0002-6529-9109. 2024 Small topographical variations controlling trace maker community: Combining palaeo- and neoichnological data at the Porcupine Abyssal Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 655, 112524. 10.1016/j.palaeo.2024.112524
Before downloading, please read NORA policies.Preview |
Text
© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 1-s2.0-S0031018224005133-main.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (14MB) | Preview |
Abstract/Summary
Ichnological research has generally assumed that abyssal plains are dominated by quiescent, homogenous environmental conditions. Thus, deep-sea trace fossil assemblage changes have been usually linked to significant spatial and temporal environmental variations. Here, we conducted a comparative ichnological analysis between a small abyssal hill (50 m elevation) and the surrounding abyssal plain; this modest bathymetric variation is known to generate substantial environmental heterogeneity for the benthic fauna community of the Porcupine Abyssal Plain (c. 4850 m depth), Northeast Atlantic. Based on X-ray data from a 5 × 5 core grid emplaced in two box cores, we compared hill and plain bioturbational sedimentary structures, including trace fossil assemblages (e.g., ichnotaxonomy) and biodeformational structures (e.g., mixed-layer depth). We observed that topographically-enhanced near-bottom currents over the hill likely produce significant changes in depositional dynamics and sediment properties (e.g., grain size, organic matter content and degradation), and control specificities of bioturbational sedimentary structures (e.g., trace fossils, mixed layer attributes such as thickness, mottled background, discrete traces). Palaeoichnological data suggested that the abyssal plain had experienced consistent conditions during the last thousands of years while the abyssal hill recorded improving environmental conditions for the trace maker community. Our results highlight the complexity of the deep-sea environment, demonstrating that small changes in bioturbated sedimentary assemblages appear even within the same box core (m-scale), and that substantial changes can occur due to environmental heterogeneity (e.g., subtle topographic variations) at the local scale (km-scale). Considering the vast global extent of abyssal hill terrain, we suggest that their influence on the bioturbational sedimentary record may be significantly under-appreciated and require more attention in palaeoenvironmental reconstructions.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1016/j.palaeo.2024.112524 |
ISSN: | 00310182 |
Additional Keywords: | Ichnology, Deep sea, Seafloor heterogeneity, Animal-sediment interaction, Grain size, Organic matter |
Date made live: | 02 Oct 2024 12:25 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/538155 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year