nerc.ac.uk

Selective logging impacts on soil microbial communities and functioning in Bornean tropical forest

Robinson, Samuel J.B. ORCID: https://orcid.org/0000-0002-0011-7407; Elias, Dafydd M.O. ORCID: https://orcid.org/0000-0002-2674-9285; Goodall, Tim ORCID: https://orcid.org/0000-0002-1526-4071; Nottingham, Andrew T.; McNamara, Niall P. ORCID: https://orcid.org/0000-0002-5143-5819; Griffiths, Robert I.; Majalap, Noreen; Ostle, Nicholas J.. 2024 Selective logging impacts on soil microbial communities and functioning in Bornean tropical forest. Frontiers in Microbiology, 15, 1447999. 17, pp. 10.3389/fmicb.2024.1447999

Before downloading, please read NORA policies.
[thumbnail of N538082JA.pdf]
Preview
Text
N538082JA.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (3MB) | Preview

Abstract/Summary

Rainforests provide vital ecosystem services that are underpinned by plant–soil interactions. The forests of Borneo are globally important reservoirs of biodiversity and carbon, but a significant proportion of the forest that remains after large-scale agricultural conversion has been extensively modified due to timber harvest. We have limited understanding of how selective logging affects ecosystem functions including biogeochemical cycles driven by soil microbes. In this study, we sampled soil from logging gaps and co-located intact lowland dipterocarp rainforest in Borneo. We characterised soil bacterial and fungal communities and physicochemical properties and determined soil functioning in terms of enzyme activity, nutrient supply rates, and microbial heterotrophic respiration. Soil microbial biomass, alpha diversity, and most soil properties and functions were resistant to logging. However, we found logging significantly shifted soil bacterial and fungal community composition, reduced the abundance of ectomycorrhizal fungi, increased the abundance of arbuscular mycorrhizal fungi, and reduced soil inorganic phosphorous concentration and nitrate supply rate, suggesting some downregulation of nutrient cycling. Within gaps, canopy openness was negatively related to ectomycorrhizal abundance and phosphomonoesterase activity and positively related to ammonium supply rate, suggesting control on soil phosphorus and nitrogen cycles via functional shifts in fungal communities. We found some evidence for reduced soil heterotrophic respiration with greater logging disturbance. Overall, our results demonstrate that while many soil microbial community attributes, soil properties, and functions may be resistant to selective logging, logging can significantly impact the composition and abundance of key soil microbial groups linked to the regulation of vital nutrient and carbon cycles in tropical forests.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.3389/fmicb.2024.1447999
UKCEH and CEH Sections/Science Areas: Soils and Land Use (Science Area 2017-)
ISSN: 1664-302X
Additional Information. Not used in RCUK Gateway to Research.: Open Access paper - full text available via Official URL link.
Additional Keywords: soil bacteria, soil fungi, soil biogeochemical cycling, soil heterotrophic respiration, soil enzymes, canopy gap, dipterocarp
NORA Subject Terms: Ecology and Environment
Agriculture and Soil Science
Date made live: 26 Sep 2024 15:11 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/538082

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...