Farkas, Kata; Kevill, Jessica; Williams, Rachel C.; Pântea, Igor; Ridding, Nicola; Lambert-Slosarska, Kathryn; Woodhall, Nick; Grimsley, Jasmine M.S.; Wade, Matthew J.; Singer, Andrew
ORCID: https://orcid.org/0000-0003-4705-6063; Weightman, Andrew J.; Cross, Gareth; Jones, Davey L..
2024
Comparative assessment of Nanotrap and polyethylene glycol-based virus concentration in wastewater samples.
FEMS Microbes, 5, xtae007.
8, pp.
10.1093/femsmc/xtae007
Abstract
Wastewater-based epidemiology is now widely used in many countries for the routine monitoring of SARS-CoV-2 and other viruses at a community level. However, efficient sample processing technologies are still under investigation. In this study, we compared the performance of the novel Nanotrap® Microbiome Particles (NMP) concentration method to the commonly used polyethylene glycol (PEG) precipitation method for concentrating viruses from wastewater and their subsequent quantification and sequencing. For this, we first spiked wastewater with SARS-CoV-2, influenza and measles viruses and norovirus and found that the NMP method recovered 0.4–21% of them depending on virus type, providing consistent and reproducible results. Using the NMP and PEG methods, we monitored SARS-CoV-2, influenza A and B viruses, RSV, enteroviruses and norovirus GI and GII and crAssphage in wastewater using quantitative PCR (qPCR)-based methods and next-generation sequencing. Good viral recoveries were observed for highly abundant viruses using both methods; however, PEG precipitation was more successful in the recovery of low-abundance viruses present in wastewater. Furthermore, samples processed with PEG precipitation were more successfully sequenced for SARS-CoV-2 than those processed with the NMP method. Virus recoveries were enhanced by high sample volumes when PEG precipitation was applied. Overall, our results suggest that the NMP concentration method is a rapid and easy virus concentration method for viral targets that are abundant in wastewater, whereas PEG precipitation may be more suited to the recovery and analysis of low-abundance viruses and for next generation sequencing.
Documents
537053:221901
N537053JA.pdf
- Published Version
Available under License Creative Commons Attribution 4.0.
Available under License Creative Commons Attribution 4.0.
Download (818kB) | Preview
Information
Library
Statistics
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
![]() |
