Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

The Extraordinary March 2022 East Antarctica "Heat" Wave. Part II: Impacts on the Antarctic Ice Sheet

Wille, Jonathan D.; Alexander, Simon P.; Amory, Charles; Baiman, Rebecca; Barthélemy, Léonard; Bergstrom, Dana M.; Berne, Alexis; Binder, Hanin; Blanchet, Juliette; Bozkurt, Deniz; Bracegirdle, Thomas J. ORCID: https://orcid.org/0000-0002-8868-4739; Casado, Mathieu; Choi, Taejin; Clem, Kyle R.; Codron, Francis; Datta, Rajashree; Di Battista, Stefano; Favier, Vincent; Francis, Diana; Fraser, Alexander D.; Fourré, Elise; Garreaud, René D.; Genthon, Christophe; Gorodetskaya, Irina V.; González-Herrero, Sergi; Heinrich, Victoria J.; Hubert, Guillaume; Joos, Hanna; Kim, Seong-Joong; King, John C. ORCID: https://orcid.org/0000-0003-3315-7568; Kittel, Christoph; Landais, Amaelle; Lazzara, Matthew; Leonard, Gregory H.; Lieser, Jan L.; Maclennan, Michelle; Mikolajczyk, David; Neff, Peter; Ollivier, Inès; Sprenger, Michael; Trusel, Luke; Udy, Danielle; Vance, Tessa; Vignon, Étienne; Walker, Catherine; Wever, Nander; Zou, Xun. 2024 The Extraordinary March 2022 East Antarctica "Heat" Wave. Part II: Impacts on the Antarctic Ice Sheet. Journal of Climate, 37 (3). 779-799. 10.1175/JCLI-D-23-0176.1

Abstract
Between 15 and 19 March 2022, East Antarctica experienced an exceptional heat wave with widespread 30°–40°C temperature anomalies across the ice sheet. In Part I, we assessed the meteorological drivers that generated an intense atmospheric river (AR) that caused these record-shattering temperature anomalies. Here, we continue our large collaborative study by analyzing the widespread and diverse impacts driven by the AR landfall. These impacts included widespread rain and surface melt that was recorded along coastal areas, but this was outweighed by widespread high snowfall accumulations resulting in a largely positive surface mass balance contribution to the East Antarctic region. An analysis of the surface energy budget indicated that widespread downward longwave radiation anomalies caused by large cloud-liquid water contents along with some scattered solar radiation produced intense surface warming. Isotope measurements of the moisture were highly elevated, likely imprinting a strong signal for past climate reconstructions. The AR event attenuated cosmic ray measurements at Concordia, something previously never observed. Last, an extratropical cyclone west of the AR landfall likely triggered the final collapse of the critically unstable Conger Ice Shelf while further reducing an already record low sea ice extent.
Documents
536268:218694
[thumbnail of Open Access published article is licensed under the terms of the default AMS reuse license.]
Preview
Open Access published article is licensed under the terms of the default AMS reuse license.
clim-JCLI-D-23-0176.1.pdf - Published Version

Download (44MB) | Preview
Information
Programmes:
BAS Programmes 2015 > Atmosphere, Ice and Climate
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item