Sustainability of bioenergy – mapping the risks & benefits to inform future bioenergy systems
Welfle, Andrew James; Almena, Alberto; Arshad, Muhammad Naveed; Banks, Scott William; Butnar, Isabela; Chong, Katie Jane; Cooper, Samuel J.G.; Daly, Helen; Garcia Freites, Samira; Güleç, Fatih; Hardacre, Christopher; Holland, Robert; Lan, Lan; Lee, Chai Siah; Robertson, Peter; Rowe, Rebecca ORCID: https://orcid.org/0000-0002-7554-821X; Shepherd, Anita; Skillen, Nathan; Tedesco, Silvia; Thornley, Patricia; Verdía Barbará, Pedro; Watson, Ian; Williams, Orla Sioned Aine; Röder, Mirjam. 2023 Sustainability of bioenergy – mapping the risks & benefits to inform future bioenergy systems. Biomass and Bioenergy, 177, 106919. 19, pp. 10.1016/j.biombioe.2023.106919
Before downloading, please read NORA policies.Preview |
Text
N536014JA.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (13MB) | Preview |
Abstract/Summary
Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions - there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding ‘credit’ across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1016/j.biombioe.2023.106919 |
UKCEH and CEH Sections/Science Areas: | Soils and Land Use (Science Area 2017-) |
ISSN: | 0961-9534 |
Additional Information. Not used in RCUK Gateway to Research.: | Open Access paper - full text available via Official URL link. |
Additional Keywords: | sustainable, indicators, biomass, trends, policy, modelling |
NORA Subject Terms: | Ecology and Environment Data and Information |
Date made live: | 09 Nov 2023 11:28 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/536014 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year