nerc.ac.uk

Highly variable friction and slip observed at Antarctic ice stream bed

Hudson, T.S.; Kufner, S.K.; Brisbourne, A.M. ORCID: https://orcid.org/0000-0002-9887-7120; Kendall, J.M.; Smith, A.M. ORCID: https://orcid.org/0000-0001-8577-482X; Alley, R.B.; Arthern, R.J. ORCID: https://orcid.org/0000-0002-3762-8219; Murray, T.. 2023 Highly variable friction and slip observed at Antarctic ice stream bed. Nature Geoscience, 16 (7). 612-618. 10.1038/s41561-023-01204-4

Before downloading, please read NORA policies.
[thumbnail of Open Access]
Preview
Text (Open Access)
© The Author(s) 2023.
s41561-023-01204-4.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (5MB) | Preview

Abstract/Summary

The slip of glaciers over the underlying bed is the dominant mechanism governing the migration of ice from land into the oceans, with accelerating slip contributing to sea-level rise. Yet glacier slip remains poorly understood, and observational constraints are sparse. Here we use passive seismic observations to measure both frictional shear stress and slip at the bed of the Rutford Ice Stream in Antarctica using 100,000 repetitive stick-slip icequakes. We find that basal shear stresses and slip rates vary from 104 to 107 Pa and 0.2 to 1.5 m per day, respectively. Friction and slip vary temporally over the order of hours, and spatially over 10s of metres, due to corresponding variations in effective normal stress and ice–bed interface material. Our findings suggest that the bed is substantially more complex than currently assumed in ice stream models and that basal effective normal stresses may be significantly higher than previously thought. Our observations can provide constraints on the basal boundary conditions for ice-dynamics models. This is critical for constraining the primary contribution of ice mass loss in Antarctica and hence for reducing uncertainty in sea-level rise projections.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1038/s41561-023-01204-4
ISSN: 1752-0894
Date made live: 20 Jun 2023 10:25 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/535034

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...