Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Forecasting changes of the magnetic field in the United Kingdom from L1 Lagrange solar wind measurements

Madsen, Frederik Dahl; Beggan, Ciaran D.; Whaler, Kathryn A.. 2022 Forecasting changes of the magnetic field in the United Kingdom from L1 Lagrange solar wind measurements. Frontiers in Physics, 10. 10.3389/fphy.2022.1017781

Abstract
Extreme space weather events can have large impacts on ground-based infrastructure important to technology-based societies. Machine learning techniques based on interplanetary observations have proven successful as a tool for forecasting global geomagnetic indices, however, few studies have examined local ground magnetic field perturbations. Nowcast and forecast models which predict the magnitude of the horizontal geomagnetic field, |BH|, and its time derivative, ∣∣dBHdt∣∣, at ground level would be valuable for assessing the potential space weather hazard. We attempt to predict the variation of the magnetic field at the three United Kingdom observatories (Eskdalemuir, Hartland and Lerwick) driven by L1 solar wind parameters. The horizontal magnetic field component and its time derivative are predicted from solar wind plasma and interplanetary magnetic field observations using Long Short-Term Memory (LSTM) networks and hybrid Convolutional Neural Network-LSTM models. A 5-fold grid search cross-validation is used for tuning the hyperparameters in each model. Forecasts were made with 5, 15 and 30-min lead times. Models were trained and validated with geomagnetic storm-only data from 1997 to 2016; their outputs were evaluated with the 7–9th September 2017 storms. The forecast models are only able to predict the directly driven parts of geomagnetic storms (not the substorms) and LSTM models generally perform best. We find the |BH| 15- and 30-min forecasts at Lerwick and Eskdalemuir have some predictive power. The 5-min |BH| forecast as well as all the ∣∣dBHdt∣∣ models for Eskdalemuir and all the Hartland models were found to have little or no predictive power. This suggests that the machine learning models have better forecasting power at higher latitude (closer to the auroral zones), where the ground magnetic variation field is larger and during storm onset, which is directly driven by changes in the solar wind.
Documents
534985:199654
[thumbnail of Open Access Paper]
Preview
Open Access Paper
Madsen-et-al_Frontiers_ForecastingfromL1.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview
Information
Programmes:
BGS Programmes 2020 > Multihazards & resilience
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item