nerc.ac.uk

Using UAV-Based Photogrammetry Coupled with In Situ Fieldwork and U-Pb Geochronology to Decipher Multi-Phase Deformation Processes: A Case Study from Sarclet, Inner Moray Firth Basin, UK

Tamas, Alexandra; Holdsworth, Robert E.; Tamas, Dan M.; Dempsey, Edward D.; Hardman, Kit; Bird, Anna; Underhill, John R.; McCarthy, Dave; McCaffrey, Ken J. W.; Selby, David. 2023 Using UAV-Based Photogrammetry Coupled with In Situ Fieldwork and U-Pb Geochronology to Decipher Multi-Phase Deformation Processes: A Case Study from Sarclet, Inner Moray Firth Basin, UK. Remote Sensing, 15 (3), 695. 10.3390/rs15030695

Before downloading, please read NORA policies.
[thumbnail of Open Access Paper]
Preview
Text (Open Access Paper)
remotesensing-15-00695-v2.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (52MB) | Preview

Abstract/Summary

Constraining the age of formation and repeated movements along fault arrays in superimposed rift basins helps us to better unravel the kinematic history as well as the role of inherited structures in basin evolution. The Inner Moray Firth Basin (IMFB, western North Sea) overlies rocks of the Caledonian basement, the pre-existing Devonian–Carboniferous Orcadian Basin, and a regionally developed Permo–Triassic North Sea basin system. IMFB rifting occurred mainly in the Upper Jurassic–Lower Cretaceous. The rift basin then experienced further regional tilting, uplift and fault reactivation during the Cenozoic. The Devonian successions exposed onshore along the northwestern coast of IMFB and the southeastern onshore exposures of the Orcadian Basin at Sarclet preserve a variety of fault orientations and structures. Their timing and relationship to the structural development of the wider Orcadian and IMFB are poorly understood. In this study, drone airborne optical images are used to create high-resolution 3D digital outcrops. Analyses of these images are then coupled with detailed field observations and U-Pb geochronology of syn-faulting mineralised veins in order to constrain the orientations and absolute timing of fault populations and decipher the kinematic history of the area. In addition, the findings help to better identify deformation structures associated with earlier basin-forming events. This holistic approach helped identify and characterise multiple deformation events, including the Late Carboniferous inversion of Devonian rifting structures, Permian minor fracturing, Late Jurassic–Early Cretaceous rifting and Cenozoic reactivation and local inversion. We were also able to isolate characteristic structures, fault kinematics, fault rock developments and associated mineralisation types related to these events

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.3390/rs15030695
ISSN: 2072-4292
Date made live: 24 Mar 2023 11:05 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/534267

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...