Yan, Yunwei; Song, Xiangzhou; Oltmanns, Marilena
ORCID: https://orcid.org/0000-0002-8959-4938.
2022
Key role of subdaily wind variability for tropical surface wind stress.
Journal of Physical Oceanography.
10.1175/JPO-D-22-0156.1
Abstract
High-frequency observations of surface winds over the open ocean are available only at limited locations. However, these observations are essential for assessing atmospheric influences on the ocean, validating reanalysis products, and building parameterization schemes. By analyzing high-frequency measurements from the Global Tropical Moored Buoy Array, the effects of subdaily winds on the mean surface wind stress magnitude are systematically examined. Subdaily winds account for 12.4% of the total stress magnitude on average. The contribution is enhanced over the Intertropical Convergence Zone and reaches a maximum (28.5%) in the equatorial western Pacific. The magnitude of the contribution is primarily determined by the kinetic energy of subdaily winds. Compared to the buoy observations, the ERA5 and MERRA2 subdaily winds underestimate this contribution by 51% and 63% due to underestimations of subdaily kinetic energy, leading to 7% and 8% underestimations in the total stress magnitude, respectively. Two new gustiness parameterization schemes related to precipitation are developed to account for the effect of subdaily winds, explaining ~80% of the contribution from subdaily winds. Considering the importance of wind stress for ocean-atmosphere interactions, the inclusion of these parametrization schemes in climate models is expected to substantially improve simulations of large-scale climate variability.
Information
Programmes:
NOC Programmes > Marine Physics and Ocean Climate
Library
Statistics
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
![]() |
