A simple two-state model interprets temporal modulations in eruptive activity and enhances multivolcano hazard quantification
Selva, Jacopo; Sandri, Laura; Taroni, Matteo; Sulpizio, Roberto; Tierz, Pablo; Costa, Antonio. 2022 A simple two-state model interprets temporal modulations in eruptive activity and enhances multivolcano hazard quantification. Science Advances, 8 (44), 4415. 10.1126/sciadv.abq4415
Before downloading, please read NORA policies.Preview |
Text (Open Access Paper)
sciadv.abq4415.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (4MB) | Preview |
Abstract/Summary
Volcanic activity typically switches between high-activity states with many eruptions and low-activity states with few or no eruptions. We present a simple two-regime physics-informed statistical model that allows interpreting temporal modulations in eruptive activity. The model enhances comprehension and comparison of different volcanic systems and enables homogeneous integration into multivolcano hazard assessments that account for potential changes in volcanic regimes. The model satisfactorily fits the eruptive history of the three active volcanoes in the Neapolitan area, Italy (Mt. Vesuvius, Campi Flegrei, and Ischia) which encompass a wide range of volcanic behaviors. We find that these volcanoes have appreciably different processes for triggering and ending high-activity periods connected to different dominant volcanic processes controlling their eruptive activity, with different characteristic times and activity rates (expressed as number of eruptions per time interval). Presently, all three volcanoes are judged to be in a low-activity state, with decreasing probability of eruptions for Mt. Vesuvius, Ischia, and Campi Flegrei, respectively.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1126/sciadv.abq4415 |
ISSN: | 2375-2548 |
Date made live: | 06 Dec 2022 15:03 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/533687 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year