nerc.ac.uk

Lagrangian overturning pathways in the eastern Subpolar North Atlantic

Tooth, Oliver J.; Johnson, Helen L.; Wilson, Chris ORCID: https://orcid.org/0000-0003-0891-2912. 2022 Lagrangian overturning pathways in the eastern Subpolar North Atlantic. Journal of Climate. 1-53. 10.1175/JCLI-D-21-0985.1

Before downloading, please read NORA policies.
[thumbnail of 1520-0442-JCLI-D-21-0985.1 (1).pdf]
Preview
Text
1520-0442-JCLI-D-21-0985.1 (1).pdf

Download (6MB) | Preview

Abstract/Summary

The strength of the Atlantic Meridional Overturning Circulation (AMOC) at subpolar latitudes is dominated by water mass transformation in the eastern Subpolar North Atlantic (SPNA). However, the distribution of this overturning across the individual circulation pathways of both the Subpolar Gyre (SPG) and the Nordic seas overflows remains poorly understood. Here, we introduce a novel Lagrangian measure of the density-space overturning to quantify the principal pathways of the time-mean overturning circulation within an eddy-permitting ocean model hindcast. By tracing the trajectories of water parcels initialised from the northward inflows across the OSNAP East section, we show that water mass transformation along the pathways of the eastern SPG accounts for 55% of the mean strength of the eastern subpolar AMOC. Water parcels following the dominant SPG pathway, sourced from the Sub-Arctic Front, form upper North Atlantic Deep Water by circulating horizontally across sloping isopycnals in less than 2 years. A slower SPG route, entrained by overflow waters south of the Iceland-Faroes Ridge, is a crucial conduit for subtropical-origin water masses to penetrate the deep ocean on subdecadal timescales. On reproducing our findings using time-averaged velocity and hydrographic fields, we further show that the Nordic seas overflow pathways integrate multiple decades of water mass transformation before returning across the Greenland-Scotland Ridge. We propose that the strong disparity between the overturning timescales of the SPG (interannual) and the Nordic seas overflows (multi-decadal) has important implications for the propagation of density anomalies within the eastern SPNA and hence the sources of AMOC variability.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1175/JCLI-D-21-0985.1
ISSN: 0894-8755
Date made live: 05 Dec 2022 20:28 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/533676

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...