Seed fungal endophytes promote the establishment of invasive Poa annua in Maritime Antarctica
Ballesteros, G.I.; Acuña-Rodríguez, I.S.; Barrera, A.; Gundel, P.E.; Newsham, Kevin ORCID: https://orcid.org/0000-0002-9108-0936; Molina-Montenegro, M.A.. 2022 Seed fungal endophytes promote the establishment of invasive Poa annua in Maritime Antarctica [in special issue: The Ecology and Evolution of Plants in Extreme Environments] Plant Ecology & Diversity, 15 (5-6). 199-212. 10.1080/17550874.2022.2145579
Before downloading, please read NORA policies.
Text
Seed fungal endophytes promote the establishment of invasive Poa annua in Maritime Antarctica.pdf - Accepted Version Restricted to NORA staff only Download (2MB) | Request a copy |
Abstract/Summary
Background Invasive plants may displace native species. This is the case of Poa annua, the only non-native plant species successfully established in Maritime Antarctica. Nonetheless, it is uncertain which factors drive the competitive success of P. annua in the harsh environmental conditions of the region. The ability of this plant species to establish novel mutualistic interactions with resident soil fungi may be crucial for its invasiveness. Such ability may be linked to the vertical transmission of the fungal endophytes via seeds. Aims We undertook a study to assess the role of seed fungal endophytes as promoters of the establishment and invasion of Poa annua in Maritime Antarctica. Methods We explored the composition and diversity of fungal communities associated with different P. annua tissues (seeds, leaves and roots) and the soil. We also measured parameters including germination rate, above-ground biomass, reproductive structures, and the survival of invasive P. annua as well as of the native Colobanthus quitensis and Deschampsia antarctica grown from seeds with and without endophytes. Furthermore, we conducted inter- and intraspecific competition experiments among native and invasive plants, where chemically-mediated plant-to-plant interference (allelopathy) and plant growth rate were measured to calculate a relative competition index. Results We found that fungal endophyte taxa associated with P. annua tissues were very different from those in the soil. Fungal endophytes in P. annua differed among seed, root and shoot tissues, which suggests low transmission among different organs. The removal of endophytes from P. annua seeds was associated with reduced seed germination, plant growth and survivorship, while the competitive ability of P. annua (assessed by accumulated biomass) relative to native species, as well as levels of allelochemicals in soils, were higher in the presence of seed fungal endophytes. Conclusion Our results suggest that fungal endophytes, maternally inherited through seeds, improve host fitness and may contribute to the invasive success of P. annua in Antarctica.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1080/17550874.2022.2145579 |
ISSN: | 1755-0874 |
Additional Keywords: | Antarctica; fungal endophytes; invasion; Poa annua; seed-microbiome |
Date made live: | 11 Nov 2022 18:25 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/533538 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year