Constraints on fluid flow pathways from shear wave splitting in and around an active fluid-escape structure: Scanner Pockmark, North Sea
Robinson, A H; Bayrakci, G; Macdonald, C; Minshull, T A; Bull, J M; Chapman, M; Henstock, T J; Callow, B. 2022 Constraints on fluid flow pathways from shear wave splitting in and around an active fluid-escape structure: Scanner Pockmark, North Sea. Geophysical Journal International, 231 (2). 1164-1195. 10.1093/gji/ggac197
Before downloading, please read NORA policies.Preview |
Text
ggac197.pdf Available under License Creative Commons Attribution 4.0. Download (53MB) | Preview |
Abstract/Summary
Vertical fluid-escape structures observed in seismic reflection data represent an important class of potentially active fluid flow pathways. An understanding of the mechanism of fluid flow in these types of structures is needed to assess the risk of natural gas venting from potential subsurface carbon dioxide storage operations. The Scanner Pockmark Complex is a 22 m deep, 900 × 450 m seabed depression in the North Sea, which actively vents methane, and is underlain by a seismic chimney structure with horizontal dimensions of ∼300 × 600 m. Gas accumulation is evidenced by the presence of bright reflectors at the top of this seismic chimney, at a depth of ∼50 m below the seabed. Here, we analyse seismic anisotropy in these shallow sediments using shear wave splitting observed on ocean bottom seismographs (OBS). Anisotropy varies spatially, with a strength of ∼1–4 per cent, on several OBS located in and around the pockmark complex. By correlating these observations with calculated subsurface P- and S-wave velocities, we show that there is anisotropy present throughout the sediments through which the chimney passes, which are interpreted as relating to syn- and post-depositional glaciomarine processes. However, within the chimney itself the orientation of the fast direction is different to that outside the chimney and the degree of anisotropy is lower. We attribute this difference as indicating that the anisotropy observed within the chimney is associated with the formation and continued presence of the gas migration system, which overprints the background depositional anisotropy.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1093/gji/ggac197 |
ISSN: | 0956-540X |
Date made live: | 22 Sep 2022 12:23 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/533258 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year