Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Multiple carbon cycle mechanisms associated with the glaciation of Marine Isotope Stage 4

Menking, James A.; Shackleton, Sarah A.; Bauska, Thomas K. ORCID: https://orcid.org/0000-0003-1901-0367; Buffen, Aron M.; Brook, Edward J.; Barker, Stephen; Severinghaus, Jeffrey P.; Dyonisius, Michael N.; Petrenko, Vasilii V.. 2022 Multiple carbon cycle mechanisms associated with the glaciation of Marine Isotope Stage 4. Nature Communications, 13 (1), 5443. 10, pp. 10.1038/s41467-022-33166-3

Abstract
Here we use high-precision carbon isotope data (δ13C-CO2) to show atmospheric CO2 during Marine Isotope Stage 4 (MIS 4, ~70.5-59 ka) was controlled by a succession of millennial-scale processes. Enriched δ13C-CO2 during peak glaciation suggests increased ocean carbon storage. Variations in δ13C-CO2 in early MIS 4 suggest multiple processes were active during CO2 drawdown, potentially including decreased land carbon and decreased Southern Ocean air-sea gas exchange superposed on increased ocean carbon storage. CO2 remained low during MIS 4 while δ13C-CO2 fluctuations suggest changes in Southern Ocean and North Atlantic air-sea gas exchange. A 7 ppm increase in CO2 at the onset of Dansgaard-Oeschger event 19 (72.1 ka) and 27 ppm increase in CO2 during late MIS 4 (Heinrich Stadial 6, ~63.5-60 ka) involved additions of isotopically light carbon to the atmosphere. The terrestrial biosphere and Southern Ocean air-sea gas exchange are possible sources, with the latter event also involving decreased ocean carbon storage.
Documents
533234:189248
[thumbnail of Open Access]
Preview
Open Access
s41467-022-33166-3.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
Information
Programmes:
BAS Programmes 2015 > Ice Dynamics and Palaeoclimate
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item