Summer surface air temperature proxies point to near-sea-ice-free conditions in the Arctic at 127 ka
Sime, Louise C. ORCID: https://orcid.org/0000-0002-9093-7926; Sivankutty, Rahul; Malmierca Vallet, Irene ORCID: https://orcid.org/0000-0002-2871-9741; de Boer, Agatha M.; Sicard, Marie. 2023 Summer surface air temperature proxies point to near-sea-ice-free conditions in the Arctic at 127 ka. Climate of the Past, 19 (4). 883-900. https://doi.org/10.5194/cp-19-883-2023
Before downloading, please read NORA policies.
|
Text (Open Access)
© Author(s) 2023. cp-19-883-2023.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (10MB) | Preview |
Abstract/Summary
The Last Interglacial (LIG) period, which had higher summer solar insolation than today, has been suggested as the last time that Arctic summers were ice free. However, the latest suite of Coupled Modelling Intercomparison Project 6 Paleoclimate (CMIP6-PMIP4) simulations of the LIG produce a wide range of Arctic summer minimum sea ice area (SIA) results, with a 30 % to 96 % reduction from the pre-industrial (PI) period. Sea ice proxies are also currently neither abundant nor consistent enough to determine the most realistic state. Here we estimate LIG minimum SIA indirectly through the use of 21 proxy records for LIG summer surface air temperature (SSAT) and 11 CMIP6-PMIP4 models for the LIG. We use two approaches. First, we use two tests to determine how skilful models are at simulating reconstructed ΔSSAT from proxy records (where Δ refers to LIG-PI). This identifies a positive correlation between model skill and the magnitude of ΔSIA: the most reliable models simulate a larger sea ice reduction. Averaging the two most skilful models yields an average SIA of 1.3×106 km2 for the LIG. This equates to a 4.5×106 km2 or 79 % SIA reduction from the PI to the LIG. Second, across the 11 models, the averaged ΔSSAT at the 21 proxy locations and the pan-Arctic average ΔSSAT are inversely correlated with ΔSIA ( and −0.79, respectively). In other words, the models show that a larger Arctic warming is associated with a greater sea ice reduction. Using the proxy-record-averaged ΔSSAT of 4.5±1.7 K and the relationship between ΔSSAT and ΔSIA suggests an estimated sea ice reduction of km2 or about 74 % less sea ice than the PI period. The mean proxy-location ΔSSAT is well correlated with the Arctic-wide ΔSSAT north of 60∘ N (r=0.97), and this relationship is used to show that the mean proxy record ΔSSAT is equivalent to an Arctic-wide warming of 3.7±1.5 K at the LIG compared to the PI period. Applying this Arctic-wide ΔSSAT and its modelled relationship to ΔSIA, results in a similar estimate of LIG sea ice reduction of km2. These LIG climatological minimum SIA of 1.3 to 1.5×106 km2 are close to the definition of a summer ice-free Arctic, which is a maximum sea ice extent of less than 1×106 km2. The results of this study thus suggest that the Arctic likely experienced a mixture of ice-free and near-ice-free summers during the LIG.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.5194/cp-19-883-2023 |
Date made live: | 17 Aug 2022 17:33 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/533069 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year