nerc.ac.uk

Widespread greening suggests increased dry-season plant water availability in the Rio Santa valley, Peruvian Andes

Hänchen, Lorenz; Klein, Cornelia ORCID: https://orcid.org/0000-0001-6686-0458; Maussion, Fabien; Gurgiser, Wolfgang; Calanca, Pierluigi; Wohlfahrt, Georg. 2022 Widespread greening suggests increased dry-season plant water availability in the Rio Santa valley, Peruvian Andes. Earth System Dynamics, 13 (1). 595-611. 10.5194/esd-13-595-2022

Before downloading, please read NORA policies.
[thumbnail of N532486JA.pdf]
Preview
Text
N532486JA.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (13MB) | Preview

Abstract/Summary

In the semi-arid Peruvian Andes, the growing season is mostly determined by the timing of the onset and retreat of the wet season, to which annual crop yields are highly sensitive. Recently, local farmers in the Rio Santa basin (RSB) reported more erratic rainy season onsets and further challenges related to changes in rainfall characteristics. Previous studies based on local rain gauges, however, did not find any significant long-term rainfall changes, potentially linked to the scarce data basis and inherent difficulties in capturing the highly variable rainfall distribution typical for complex mountain terrain. To date, there remains considerable uncertainty in the RSB regarding changes in plant-available water over the last decades. In this study, we exploit satellite-derived information of high-resolution vegetation greenness as an integrated proxy to derive variability and trends of plant water availability. By combining MODIS Aqua and Terra vegetation indices (VIs), datasets of precipitation (both for 2000–2020) and soil moisture (since 2015), we explore recent spatio-temporal changes in the vegetation growing season. We find the Normalized Difference Vegetation Index (NDVI) to be coupled to soil moisture on a sub-seasonal basis, while NDVI and rainfall only coincide on interannual timescales. Over 20 years, we find significant greening in the RSB, particularly pronounced during the dry season (austral winter), indicating an overall increase in plant-available water over the past 2 decades. The start of the growing season (SOS) exhibits high interannual variability of up to 2 months compared to the end of the growing season (EOS), which varies by up to 1 month, therefore dominating the variability of the growing season length (LOS). The EOS becomes significantly delayed over the analysis period, matching the observed dry-season greening. While both in situ and gridded rainfall datasets show incoherent changes in annual rainfall for the region, Climate Hazards InfraRed Precipitation with Station data (CHIRPS) rainfall suggests significant positive dry-season trends for 2 months coinciding with the most pronounced greening. As the greening signal is strongly seasonal and reaches high altitudes on unglaciated valley slopes, we cannot link this signal to water storage changes on timescales beyond one rainy season, making interannual rainfall variability the most likely driver. Exploring El Niño–Southern Oscillation (ENSO) control on greening, we find an overall increased LOS linked to an earlier SOS in El Niño years, which however cannot explain the observed greening and delayed EOS. While our study could not corroborate anecdotal evidence of recent changes, we confirm that the SOS is highly variable and conclude that rainfed farming in the RSB would profit from future efforts being directed towards improving medium-range forecasts of the rainy season onset.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.5194/esd-13-595-2022
UKCEH and CEH Sections/Science Areas: Hydro-climate Risks (Science Area 2017-)
ISSN: 2190-4979
Additional Information. Not used in RCUK Gateway to Research.: Open Access paper - full text available via Official URL link.
NORA Subject Terms: Ecology and Environment
Date made live: 12 Apr 2022 15:29 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/532486

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...