Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

The influence of gas hydrate morphology on reservoir permeability and geophysical shear wave remote sensing

Sahoo, Sourav ORCID: https://orcid.org/0000-0001-9644-8878; Best, Angus ORCID: https://orcid.org/0000-0001-9558-4261. 2021 The influence of gas hydrate morphology on reservoir permeability and geophysical shear wave remote sensing. Journal of Geophysical Research: Solid Earth, 126 (11). 10.1029/2021JB022206

Abstract
We show that direct estimates of the permeability of hydrate-bearing geological formations are possible from remote measurements of shear wave velocity (Vs) and attenuation (Qs−1). We measured Vs, Qs−1 and electrical resistivity at time intervals during methane hydrate formation in Berea sandstone using a laboratory ultrasonic pulse-echo system. We observed that Vs and Qs−1 both increase with hydrate saturation Sh, with two peaks in Qs−1 at hydrate saturations of around 6% and 20% that correspond to changes in gradient of Vs. We implemented changes in permeability with hydrate saturation into well-known Biot-type poro-elastic models for two- and three-phases for low (Sh < 12%) and high (Sh > 12%) hydrate saturations respectively. By accounting for changes in permeability linked to hydrate morphology, the models were able to describe the Vs and Qs−1 observations. We found that the first Qs−1 peak is caused by a reduction of permeability during hydrate formation associated with a transition from pore-floating to pore-bridging hydrate morphology; similarly, the second Qs−1 peak is caused by a permeability reduction associated with a transition from pore-bridging hydrate morphology to an interlocking network of hydrate in the pores. We inverted for permeability using our poro-elastic models from Vs and Qs−1. This inverted permeability agrees with permeability obtained independently from electrical resistivity. We demonstrate a good match of our models to shear wave data at 200 Hz and 2 kHz frequencies from the literature, indicating the general applicability of the models.
Documents
531510:180633
[thumbnail of 2021JB022206.pdf]
Preview
2021JB022206.pdf
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
Information
Programmes:
NOC Programmes > Ocean BioGeosciences
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item