Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Are peatlands in different states with respect to their thermodynamic behaviour? A simple test of peatland energy and entropy budgets

Worrall, Fred; Morrison, Ross ORCID: https://orcid.org/0000-0002-1847-3127; Evans, Chris ORCID: https://orcid.org/0000-0002-7052-354X; Kaduk, Joerg; Page, Susan; Cumming, Alex; Rayment, Mark; Kettridge, Nicholas. 2021 Are peatlands in different states with respect to their thermodynamic behaviour? A simple test of peatland energy and entropy budgets. Hydrological Processes, 35 (12), e14431. 14, pp. 10.1002/hyp.14431

Abstract
Whilst all ecosystems must obey the second law of thermodynamics, these physical bounds and controls on ecosystem evolution and development are largely ignored across the ecohydrological literature. To unravel the importance of these underlying restraints on ecosystem form and function, and their power to inform our scientific understanding, we have calculated the entropy budget of a range of peat ecosystems. We hypothesise that less disturbed peatlands are “near equilibrium” with respect to the 2nd law of thermodynamics and thus respond to change by minimising entropy production. This “near equilibrium” state is best achieved by limiting evaporative losses. Alternatively, peatlands “far-from–equilibrium” respond to a change in energy inputs by maximising entropy production which is best achieved by increasing evapotranspiration. To test these alternatives this study examined the energy balance time series from seven peatlands across a disturbance gradient. We estimate the entropy budgets for each and determine how a change in net radiation (ΔRn) was transferred to a change in latent heat flux (ΔλE). The study showed that: i. The transfer of net radiation to latent heat differed significantly between peatlands. One group transferred up to 64% of the change in net radiation to a change in latent heat flux, while the second transferred as little as 27%. ii. Sites that transferred the most energy to latent heat flux were those that produced the greatest entropy. The study shows that an ecosystem could be “near equilibrium” rather than “far from equilibrium”.
Documents
531456:196020
[thumbnail of N531456PP.pdf]
Preview
N531456PP.pdf - Accepted Version

Download (1MB) | Preview
Information
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item