Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

In-situ fluorescence spectroscopy is a more rapid and resilient indicator of faecal contamination risk in drinking water than faecal indicator organisms

Sorensen, James P.R.; Nayebare, Jacintha; Carr, Andrew F.; Lyness, Robert; Campos, Luiza C.; Ciric, Lena; Goodall, Tim ORCID: https://orcid.org/0000-0002-1526-4071; Kulabako, Robinah; Rushworth Curran, Catherine M.; MacDonald, Alan M. ORCID: https://orcid.org/0000-0001-6636-1499; Owor, Michael; Read, Daniel S. ORCID: https://orcid.org/0000-0001-8546-5154; Taylor, Richard G.. 2021 In-situ fluorescence spectroscopy is a more rapid and resilient indicator of faecal contamination risk in drinking water than faecal indicator organisms. Water Research, 206, 117734. 11, pp. 10.1016/j.watres.2021.117734

Abstract
Faecal indicator organisms (FIOs) are limited in their ability to protect public health from the microbial contamination of drinking water because of their transience and time required to deliver a result. We evaluated alternative rapid, and potentially more resilient, approaches against a benchmark FIO of thermotolerant coliforms (TTCs) to characterise faecal contamination over 14 months at 40 groundwater sources in a Ugandan town. Rapid approaches included: in-situ tryptophan-like fluorescence (TLF), humic-like fluorescence (HLF), turbidity; sanitary inspections; and total bacterial cells by flow cytometry. TTCs varied widely in six sampling visits: a third of sources tested both positive and negative, 50% of sources had a range of at least 720 cfu/100 mL, and a two-day heavy rainfall event increased median TTCs five-fold. Using source medians, TLF was the best predictor in logistic regression models of TTCs ≥10 cfu/100 mL (AUC 0.88) and best correlated to TTC enumeration (ρs 0.81), with HLF performing similarly. Relationships between TLF or HLF and TTCs were stronger in the wet season than the dry season, when TLF and HLF were instead more associated with total bacterial cells. Source rank-order between sampling rounds was considerably more consistent, according to cross-correlations, using TLF or HLF (min ρs 0.81) than TTCs (min ρs 0.34). Furthermore, dry season TLF and HLF cross-correlated more strongly (ρs 0.68) than dry season TTCs (ρs 0.50) with wet season TTCs, when TTCs were elevated. In-situ TLF or HLF are more rapid and resilient indicators of faecal contamination risk than TTCs.
Documents
531306:179182
[thumbnail of Open Access Paper]
Preview
Open Access Paper
1-s2.0-S0043135421009283-main.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (4MB) | Preview
Information
Programmes:
BGS Programmes 2020 > Environmental change, adaptation & resilience
UKCEH and CEH Science Areas 2017-24 (Lead Area only) > Soils and Land Use
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item