Quantification of dissolved CO2 plumes at the Goldeneye CO2-release experiment

Gros, Jonas; Schmidt, Mark; Linke, Peter; Dötsch, Saskia; Triest, Jack; Martínez-Cabanas, María; Esposito, Mario; Dale, Andrew W.; Sommer, Stefan; Flohr, Anita ORCID:; Fone, Joseph; Bull, Jonathan M.; Roche, Ben; Strong, James A. ORCID:; Saw, Kevin; Brown, Robin; Koopmans, Dirk; Wallmann, Klaus. 2021 Quantification of dissolved CO2 plumes at the Goldeneye CO2-release experiment. International Journal of Greenhouse Gas Control, 109, 103387.

Before downloading, please read NORA policies.
1-s2.0-S1750583621001390-main.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (5MB) | Preview


According to many prognostic scenarios by the Intergovernmental Panel on Climate Change (IPCC), a scaling-up of carbon dioxide (CO2) capture and storage (CCS) by several orders-of-magnitude is necessary to meet the target of ≤2 °C global warming by 2100 relative to preindustrial levels. Since a large fraction of the predicted CO2 storage capacity lies offshore, there is a pressing need to develop field-tested methods to detect and quantify potential leaks in the marine environment. Here, we combine field measurements with numerical models to determine the flow rate of a controlled release of CO2 in a shallow marine setting at about 119 m water depth in the North Sea. In this experiment, CO2 was injected into the sediment at 3 m depth at 143 kg d-1. The new leakage monitoring tool predicts that 91 kg d-1 of CO2 escaped across the seafloor, and that 51 kg d-1 of CO2 were retained in the sediment, in agreement with independent field estimates. The new approach relies mostly on field data collected from ship-deployed technology (towed sensors, Acoustic Doppler current profiler—ADCP), which makes it a promising tool to monitor existing and upcoming offshore CO2 storage sites and to detect and quantify potential CO2 leakage.

Item Type: Publication - Article
Digital Object Identifier (DOI):
ISSN: 17505836
Date made live: 20 Oct 2021 14:46 +0 (UTC)

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...