Inall, Mark E.; Toberman, Matthew; Polton, Jeff A.
ORCID: https://orcid.org/0000-0003-0131-5250; Palmer, Matthew R.; Green, J. A. Mattias; Rippeth, Tom P..
2021
Shelf seas baroclinic energy loss: pycnocline mixing and bottom boundary layer dissipation.
Journal of Geophysical Research: Oceans, 126 (8).
10.1029/2020JC016528
Abstract
Observations of turbulent kinetic energy dissipation rate from a range of historical shelf seas data sets are viewed from the perspective of their forcing and dissipation mechanisms: barotropic to baroclinic tidal energy conversion, and pycnocline and bottom boundary layer (BBL) dissipation. The observations are placed in their geographical context using a high resolution numerical model (NEMO AMM60) in order to compute relevant maps of the forcing (conversion). We analyze, in total, 18 shear microstructure surveys undertaken over a 17 year period from 1996 to 2013 on the North West European shelf, consisting of 3,717 vertical profiles of shear microstructure: 2,013 from free falling profilers and 1,704 from underwater gliders. A robust positive relationship is found between model-derived barotropic to baroclinic conversion, and observed pycnocline integrated. A fitted power law relationship of approximately one-third is found, giving a simple new parameterization. We discuss reasons for this apparent power law and where the “missing” dissipation may be occurring. We conclude that internal wave related dissipation in the bottom boundary layer provides a robust explanation and is consistent with a commonly used fine-scale pycnocline dissipation parameterization.
Documents
531202:178325
2020JC016528.pdf
- Published Version
Available under License Creative Commons Attribution 4.0.
Available under License Creative Commons Attribution 4.0.
Download (2MB) | Preview
Information
Programmes:
NOC Programmes > Marine Physics and Ocean Climate
NOC Programmes > Marine Systems Modelling
NOC Programmes > Marine Systems Modelling
Library
Statistics
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
![]() |
