Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Direct evidence reveals transmitter signal propagation in the magnetosphere

Gu, Wenyao; Chen, Lunjin; Xia, Zhiyang; Horne, Richard B. ORCID: https://orcid.org/0000-0002-0412-6407. 2021 Direct evidence reveals transmitter signal propagation in the magnetosphere. Geophysical Research Letters, 48 (15), e2021GL093987. 10, pp. 10.1029/2021GL093987

Abstract
Signals from very-low-frequency transmitters on the ground are known to induce energetic electron precipitation from the Earth's radiation belts. The effectiveness of this mechanism depends on the propagation characteristics of those signals in the magnetosphere, and in particular whether the signals are ducted or nonducted along channels of enhanced plasma density, analogous to optical fibers. Here we perform a statistical analysis of in-situ waveform data collected by the Van Allen Probes satellites that shows that nonducted propagation dominates over ducted propagation in both the occurrence and intensity of the waves. Ray tracing confirms that the latitudinal distribution of wavevectors corresponds to nonducted as opposed to ducted propagation. Our results show the dominant mode of propagation needed to quantify transmitter-induced precipitation and improve the forecast of electron radiation belt dynamics for the safe operation of satellites.
Documents
530825:175990
[thumbnail of 2021GL093987.pdf]
Preview
2021GL093987.pdf - Published Version

Download (2MB) | Preview
Information
Programmes:
BAS Programmes 2015 > Space Weather and Atmosphere
Library
Statistics

Downloads per month over past year

More statistics for this item...

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item