nerc.ac.uk

The annual cycle of upper-ocean potential vorticity and its relationship to submesoscale instabilities

Yu, Xiaolong; Naveira Garabato, Alberto C.; Martin, Adrian P. ORCID: https://orcid.org/0000-0002-1202-8612; Marshall, David P.. 2021 The annual cycle of upper-ocean potential vorticity and its relationship to submesoscale instabilities. Journal of Physical Oceanography, 51 (2). 385-402. 10.1175/JPO-D-20-0099.1

Before downloading, please read NORA policies.
[thumbnail of [15200485 - Journal of Physical Oceanography] The Annual Cycle of Upper-Ocean Potential Vorticity and Its Relationship to Submesoscale Instabilities.pdf]
Preview
Text
[15200485 - Journal of Physical Oceanography] The Annual Cycle of Upper-Ocean Potential Vorticity and Its Relationship to Submesoscale Instabilities.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview

Abstract/Summary

The evolution of upper-ocean potential vorticity (PV) over a full year in a typical midocean area of the northeast Atlantic is examined using submesoscale- and mesoscale-resolving hydrographic and velocity measurements from a mooring array. A PV budget framework is applied to quantitatively document the competing physical processes responsible for deepening and shoaling the mixed layer. The observations reveal a distinct seasonal cycle in upper-ocean PV, characterized by frequent occurrences of negative PV within deep (up to about 350 m) mixed layers from winter to mid-spring, and positive PV beneath shallow (mostly less than 50 m) mixed layers during the remainder of the year. The cumulative positive and negative subinertial changes in the mixed layer depth, which are largely unaccounted for by advective contributions, exceed the deepest mixed layer by one order of magnitude, suggesting that mixed layer depth is shaped by the competing effects of destratifying and restratifying processes. Deep mixed layers are attributed to persistent atmospheric cooling from winter to mid-spring, which triggers gravitational instability leading to mixed layer deepening. However, on shorter time scales of days, conditions favorable to symmetric instability often occur as winds intermittently align with transient frontal flows. The ensuing submesoscale frontal instabilities are found to fundamentally alter upper-ocean turbulent convection, and limit the deepening of the mixed layer in the winter-to-mid-spring period. These results emphasize the key role of submesoscale frontal instabilities in determining the seasonal evolution of the mixed layer in the open ocean.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1175/JPO-D-20-0099.1
ISSN: 0022-3670
Date made live: 30 Jun 2021 14:15 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/530583

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...